Sponsored By

Some Massive MIMO Antennas Might Be a Little Too MassiveSome Massive MIMO Antennas Might Be a Little Too Massive

Massive MIMO antenna technology promises to deliver big boosts in users' speeds and operators' network capacity. But early reports from the field indicate the rollout of the technology has been somewhat bumpy.

Mike Dano

February 19, 2019

11 Min Read
Some Massive MIMO Antennas Might Be a Little Too Massive

Massive MIMO antenna technology has been heralded as unlocking dramatic improvements to wireless networks, boosting users' speeds and operators' network capacity. However, according to some of the technicians in charge of actually hoisting these new antennas on to cell towers, they can get fairly portly.

For example, one national contractor charged with installing new Massive MIMO antennas said that they're so big and heavy that the company is installing larger frames to hold the antennas and using cranes to get them into position.

"They are bigger from a wind-area standpoint, which is the main driver for tower loading. They are certainly heavier because of the additional elements and parts that are in them, but it ranges. I've seen massive MIMOs that are 40 to 65 pounds heavier than traditional broadband antennas," Bernard Borghei, EVP of operations and co-founder of Vertical Bridge -- the largest private tower company in the US -- told Light Reading. Following standard practice in the tower industry, Borghei didn't provide details about the wireless network operators involved in Vertical Bridge's Massive MIMO operations.

But Massive MIMO antennas come in a variety of shapes and sizes, and antennas for one operator and one spectrum band might look much different from antennas for another operator using a different spectrum band.

"The form factor for Massive MIMO is actually small and compact. As a broad industry generalization, it's probably fair to think Massive MIMO units will be physically larger, but this does not apply to Sprint," a Sprint representative wrote in response to questions from Light Reading. "Because of the physics around spectrum, Massive MIMO is great for us because it is more easily deployed on TDD-LTE 2.5GHz due to the smaller size of the radios. Also, when you add the weight of the antenna plus existing non-massive MIMO radio together, it is actually the same as the integrated Massive MIMO radio that we're using. The integration of the radio and the antenna system improves reliability by eliminating jumper cables between the radio and antenna."

Nonetheless, now is the time to evaluate the Massive MIMO landscape because many of the major operators in the US are in the early stages of a serious rollout of the technology.

What – and where – is Massive MIMO?
Massive MIMO technology has been around for years, and can be applied to LTE as well as 5G. The technology essentially replaces a handful of antennas on a cell site with dozens or hundreds. Shorthand for regular MIMO is often 2x2 or 4x4 and shorthand for Massive MIMO is often 16x16 or 64x64, with the numbers denoting the number of available antennas. The result is that, instead of having to share an antenna with a bunch of other people, you get to share an antenna with just a few other people. If you're lucky (like, it's late at night and no one is around) you might get an antenna or two all to yourself. Further, technologies like beamforming can be added to Massive MIMO antennas, thus allowing each of the antennas to point themselves at users to deliver an even better, faster connection.

So what do you get out of all that? A 64x64 configuration could result in an 8x boost in uplink speeds and a 5x boost in download speeds, according to Nokia. Further improvements can be had through the application of more antennas and other technologies.

And that's why some operators are in the midst of deploying the technology into their networks.

Sprint, for its part, has been an early and vocal supporter of Massive MIMO. The company's CTO, John Saw, discusses the technology at almost every opportunity, explaining that Massive MIMO is Sprint's stepping stone to 5G because it will provide much faster speeds on the company's existing LTE network.

You're invited to attend Light Reading’s Big 5G Event! Formerly the Big Communications Event and 5G North America, Big 5G is where telecom's brightest minds deliver the critical insight needed to piece together the 5G puzzle. We'll see you May 6-8 in Denver -- communications service providers get in free!

Specifically, Sprint said recently it has hundreds of massive MIMO radios on air in a few markets -- sporting 128 antennas (64 transmitting and 64 receiving, or 64X64) -- and has found a 4x average speed and capacity increase and up to a 10x peak increase. That's up from Sprint's earlier 16 antenna MIMO configurations.

Sprint isn't alone though. Verizon last year boasted of its Massive MIMO deployment that involved 16 transceiver radio units driving an array of 96 antenna elements supplied by Ericsson. The deployment uses a 20MHz block of AWS spectrum in Irvine, Calif., on Verizon's LTE network. The operator's vendor added at the time that Massive MIMO is a "key technology enabler for 5G."

AT&T too has hinted at its Massive MIMO ambitions, including in the context of its CBRS 3.5GHz deployment plans.

And though much of T-Mobile's MIMO work has been in the 4x4 area, the company has said it will make the jump to Massive MIMO if it is successful in acquiring Sprint.

Globally there are at least 87 projects that have involved testing Massive MIMO in the context of 5G, according to the Global Mobile Suppliers Association.

Not surprisingly, all of this noise around Massive MIMO is like music to the antenna vendors, tower companies and construction crews that will be required to get Massive MIMO from the lab and up onto commercial cell sites.

Massive profit in Massive MIMO?
Executives from some of the nation's biggest tower companies -- companies that make money by renting space for cellular equipment on their "vertical real estate" -- offer differing views on whether Massive MIMO antennas represent a big new revenue stream.

"We have begun to receive amendment applications for new MIMO antennas, which are just now becoming available in higher performance designs and that will facilitate much faster speeds using existing low and mid band spectrum," said Jeff Stoops, CEO of tower company SBA Communications, last year, according to a Seeking Alpha transcript of his remarks. "These new MIMO antenna are generally wider and deeper than current antennas and in some cases way over twice as much."

And will that cost extra?

"I'm not a product expert, but to my knowledge there is no single radio unit and certainly no single antenna unit that covers the spectrum, covers the range of spectrum that will be deployed by the combined company, so you're looking at multiple units to cover that full array of spectrum and then if you start to get to the desired MIMO configuration on the antennas that actually could add quite a bit of weight and that -- obviously depending on the load of things like that that will impact the price, so that there that there could be a wide range of about outcomes there," Stoops said.

But other tower company CEOs are striking a less gleeful tone.

"They could solve the same thing by using more sites or different types of equipment depending on what spectrum bands they use and how they choose to do it. So just in isolation, I wouldn't necessarily assume that would be a large revenue driver for us," explained Crown Castle CEO Jay Brown earlier this year in a response to a question about possible revenues from the installation of Massive MIMO antennas, according to a Seeking Alpha transcript of his remarks.

"Carriers have been installing Massive MIMO antennas on our towers for a while now. We have around two to three dozen sites where we have received -- and approved -- applications to install such antennas," said Vertical Bridge's Borghei.

And what of the cost? "Rent is determined by the amount of wind loading that tenants cause on the tower and/or have rights to. … If installing a Massive MIMO antenna exceeds the wind load entitlement of the tenant, then the rent for that site would be adjusted accordingly," he said.

Ken Schmidt, president of tower consultancy firm Steel in the Air, said that Massive MIMO antennas often require tower modifications if the tower's structural capacity is exceeded. "This is particularly problematic in that carriers will want Massive MIMO in the same areas as each other and on same towers," he said.

Schmidt added that some Massive MIMO antennas create permitting or zoning approval difficulties if they're in aesthetically sensitive areas where concealment is required.

Others haven't seen that problem, at least not yet. "I'm not aware of any instances to date where our tenants have faced unusual difficulty obtaining permits, and we have seen Massive MIMO antennas installed across several states, coast-to-coast," Borghei said. "So at this time, I don't believe these antennas cause additional permitting issues or challenges aside from the normal zoning process that carriers go through."

For its part, Sprint acknowledged that, because the shape of its Massive MIMO antenna is different than its existing equipment, "we do go through a site acquisition process for leasing/zoning/permitting to add Massive MIMO to our sites. Any related changes are built into our budget," the carrier said.

But Sprint added that "the permitting/zoning process is generally no different than for other upgrades we are performing."

Putting the 'Massive' in MIMO
But for the nation's tower technicians -- those tasked with actually putting Massive MIMO antennas on top of cell towers, the work is significant.

"Based on the feedback I have received from a nationwide company who has installed over 300 of them, Massive MIMO antennas are smaller than existing antennas, but heavier in weight. The antenna is heavier because the radios are inside the antenna. The dimensions of MIMO antenna are typically: 26-inch height x 20-inch width x 9-inch deep, and weigh 103 pounds," wrote Todd Schlekeway, executive director of the National Association of Tower Erectors (NATE), in response to questions from Light Reading. The association represents tower companies and the contractors around the country that actually climb those towers.

Schlekeway added that one of NATE's members, one that has installed over 300 Massive MIMO antennas, said it has not experienced an increase in cost or fees, and described the work as a relatively simple swap of antennas.

But other NATE members are taking a different view, he said. "Some of the mid-sized companies who I reached out to (who have yet to do this work) indicated to me they anticipate that these heavier antennas will warrant an increase in costs due to the heavier mounts and larger pipes designed to support these antennas as well as potential crane costs to lift to elevation," he said.

And one NATE member described the antennas as "MUCH heavier" and requiring cranes to install.

Finally, there also seems to be some debate over whether Massive MIMO antennas are living up to their billing as a massive improvement in services. Schmidt, of the firm Steel in the Air, said that some antennas aren't performing in the field as promised, and often require more adjustment.

Sprint, not surprisingly, disagreed with that assessment. "Absolutely not true," the company said when questioned about it. "In the world's first independent benchmark study on Massive MIMO, Signals Research Group recently found the benefits of our Dallas-area … commercial deployments 'real and meaningful generating significant increases in downlink and uplink throughput,'" the company added.

Schlekeway, of NATE, said that some of his association's members have found some performance issues. Specifically, they said that Massive MIMO antennas don't reliably transmit into buildings and other structures. "This is anecdotal evidence passed along and nothing scientific however," he cautioned.

"What I can say is that we haven’t seen too many changeouts of Massive MIMO antennas, post initial installation on our towers," added Vertical Bridge's Borghei.

Thus, it appears that the rollout of Massive MIMO technology is taking the same kind of bumpy, circuitous route that many new technologies take -- it works in some places, some of the time, for some people, and for others it doesn't. And, like the rollout of other technologies before Massive MIMO, that situation may smooth out over time.

And it's likely that 5G will follow a similar trajectory.

Mike Dano, Editorial Director, 5G & Mobile Strategies, Light Reading | @mikeddano

About the Author(s)

Mike Dano

Editorial Director, 5G & Mobile Strategies, Light Reading

Mike Dano is Light Reading's Editorial Director, 5G & Mobile Strategies. Mike can be reached at [email protected], @mikeddano or on LinkedIn.

Based in Denver, Mike has covered the wireless industry as a journalist for almost two decades, first at RCR Wireless News and then at FierceWireless and recalls once writing a story about the transition from black and white to color screens on cell phones.

Subscribe and receive the latest news from the industry.
Join 62,000+ members. Yes it's completely free.

You May Also Like