Researchers explore the Kapitza-Dirac effect of particles on lightwaves; better measuring devices could result

September 13, 2001

1 Min Read

Lincoln (Neb.) -- The luminous green lasers in Herman Batelaan's laboratory at the University of Nebraska-Lincoln are more than just pretty. They are the critical element in Batelaan's team becoming the first to observe the Kapitza-Dirac effect, an accomplishment that could make possible measuring devices that are thousands of times more accurate than those in use today.

The Kapitza-Dirac effect is the diffraction of a beam of particles, electrons in particular, by a standing wave of light. It was predicted in 1933 by a pair of future Nobel Prize winners, Russian Peter Kapitza (1894-1984) and Englishman P.A.M. Dirac (1902-84), but the technology needed to demonstrate it didn't exist at the time, and wouldn't until well after the laser was invented in 1960.

Early lasers weren't capable of producing the Kapitza-Dirac effect and it wasn't until April 11, 2001, when it was observed for the first time in Batelaan's lab in NU's Behlen Laboratory for Physics.

The confirmation was reported by Batelaan and his team of Daniel Freimund and Kayvan Aflatooni in the Sept. 13 issue of Nature, the international weekly journal of science. Freimund, the lead author of the Nature article, a doctoral candidate under Batelaan, earned his bachelor's degree in mechanical engineering and his master's in physics at Nebraska. Aflatooni, who was a post-doctoral researcher in Batelaan's lab at the time of the discovery, earned his bachelor's, master's and doctoral degrees in physics at Nebraska and now is an assistant professor of physics at Fort Hays (Kan.) State University.

University of Nebraska-Lincoln

Subscribe and receive the latest news from the industry.
Join 62,000+ members. Yes it's completely free.

You May Also Like