& cplSiteName &

UCLA Claims First Silicon Laser

Light Reading
News Wire Feed
Light Reading
11/5/2004
50%
50%

LOS ANGELES -- Researchers at UCLA have demonstrated the first silicon laser, which could lead to more effective biochemical detection, secure communications and defense against heat-seeking missiles.

"This development shows that despite popular belief, a laser can indeed be made on a silicon chip," said Bahram Jalali, professor of electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science, who led the research team.

"The lack of a silicon laser has been a major roadblock in the progress of silicon optoelectronics and photonics," said Jagdeep Shah, program manager of the Defense Advanced Research Projects Agency Microsystems Technology Office, which funded the research. "The demonstration of a Raman laser in silicon has the potential to lead to new military applications in communications and sensing." Shah is a fellow of the American Physical Society and the Optical Society of America.

"Demonstration of the silicon laser by UCLA researchers is a major breakthrough that can make optical wireless a reality," said Jamie Montgomery, CEO of Montgomery and Co., a California-based investment banking firm specializing in the technology sector. "This technology also has important applications in homeland security."

"Our approach uses the natural atomic vibrations of silicon to create or amplify light," Jalali said. "This is significant because no special impurity or complicated device structure is needed."

This approach, called the Raman effect, is used in optical fibers for light generation and amplification. Until the UCLA research began, it had not been considered for creating silicon optical devices, since several kilometers of fiber are required to make a useful device whereas the typical silicon chip is millimeters in size.

In the past, many researchers have attempted, without success, to create a silicon laser by introducing impurities in the material, or by using exotic and complex device structures. Even if successful, such processes render the device incompatible with standard silicon manufacturing technology. In addition, these techniques generate light only at fixed wavelengths, and often do not correspond to the optimum wavelength for most applications.

While silicon is the so-called "bread-and-butter" material of the electronic industry, said Jalali, a member of the California NanoSystems Institute, conventional wisdom contends that it cannot be used to generate light.

The UCLA researchers exploited several properties of silicon in order to successfully demonstrate their silicon laser device.

"Silicon is a crystal with a well-ordered atomic arrangement, compared to glass fiber for example, which is amorphous with a random atomic arrangement," Jalali said. "This results in a very strong Raman effect in silicon that can be exploited to create a laser on a chip."

Silicon also has a high refractive index (3.5), whereas glass has a low index (1.5), and the optical energy in silicon waveguides is tightly confined, resulting in high intensity, further enhancing the Raman effect.

According to the researchers, the silicon laser exhibits nearly ideal characteristics and is already producing pulsed radiation with a very high peak power of one watt. Pulsed operation is needed in many detection and communication systems.

"A key attribute of the new technology is that it can produce mid-infrared radiation without any cooling," Jalali said. "This is a drastic improvement over current technology, where antimonite-based material plus cryogenic conditions are required to achieve lasing."

(6)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
redface
50%
50%
redface,
User Rank: Light Beer
12/5/2012 | 1:07:07 AM
re: UCLA Claims First Silicon Laser
This seems to be an impressive achievement if it can be made practical.

I would like to know what is the lasing mechanism. How does the laser get its gain? Is it based on electrical pumping of power, or does it depend on optical pumping (in which case it probably would not be considered a true "silicon laser").
deauxfaux
50%
50%
deauxfaux,
User Rank: Light Beer
12/5/2012 | 1:07:06 AM
re: UCLA Claims First Silicon Laser
It is a Raman laser.....the real question is

"Where is the pump"

The answer: It ain't Silicon yet
deauxfaux
50%
50%
deauxfaux,
User Rank: Light Beer
12/5/2012 | 1:07:05 AM
re: UCLA Claims First Silicon Laser
Redface

I am going to check into the details to be 100% certain on this point, if anything different comes out of my investigation, I'll track you down on one of the boards and correct my post.
But I am 99% sure.

Yes....hypesmanship. Jalali was able to hype one other company into acquisition by Intel (Cognet, I think), so none of this seems surprising.

Deaux
redface
50%
50%
redface,
User Rank: Light Beer
12/5/2012 | 1:07:05 AM
re: UCLA Claims First Silicon Laser
Deaufaux wrote:
"Where is the pump"
The answer: It ain't Silicon yet.

Thanks for the answer. So this is not really a "silicon laser". Rather, it is some kind of nonlinear optics done in silicon waveguides. It is really disturbing when people refuses to call a horse's ass a horse's ass...

I believe Intel is working on a similar device based on Raman amplification in silicon.

deauxfaux
50%
50%
deauxfaux,
User Rank: Light Beer
12/5/2012 | 1:07:04 AM
re: UCLA Claims First Silicon Laser
Really cool stuff, but unfortunately, optically pumped and commercially irrelevant for the next 5-10 years

http://www.opticsexpress.org/v...
Frank
50%
50%
Frank,
User Rank: Light Beer
12/5/2012 | 1:07:02 AM
re: UCLA Claims First Silicon Laser
Silicon optics switches by changing refractive index

By R. Colin Johnson
EE Times
October 27, 2004 (6:04 PM EDT)

PORTLAND, Ore. G Silicon circuits traditionally don't do optics. As anc"indirect bandgap" material G one in which the bottom of the conduction band is shifted with respect to the top of the valence band G energy released during electron recombination with a hole is converted primarily into phonons instead of the photons. The result is a "direct bandgap" material like gallium arsenide.

Cornell University researchers have demonstrated nanoscale techniques they say enabled the world's first silicon chip that switches optical wavelengths. The key is a ring-shaped nanoscale cavity whose resonant frequency depends on its refractive index, which can be optically switched by virtue of a second light beam controlling free-carrier dispersion.

According to Cornell University engineer Michal Lipson, the technique should eventually enable terahertz switching of signals on silicon chips with ultra-low power, high-modulation depth picosecond optical switches. They can be fabricated alongside conventional silicon circuitry. "Our photonic circuits are for carrying information, not for logic," said Lipson, principle investigator and an assistant professor at Cornell in its electrical and computer engineering department.

The first application is likey to be all-optical routers rather than not photonic circuitry, which could come later. The National Science Foundation is funding Lipson's quest for techniques to enable silicon to handle optics applications.
From The Founder
Kicking off BCE 2017, Light Reading founder Steve Saunders lays blame for NFV's slow ramp-up and urges telecom to return to old-fashioned standards building and interoperability.
Flash Poll
Live Streaming Video
Charting the CSP's Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it's going from two industry veterans.
Women in Comms Introduction Videos
Cisco: Mentoring Critical to Attract & Retain Women

7|19|17   |   6:40   |   (1) comment


Liz Centoni, senior vice president and general manager of Cisco's Computing System Product Group, shares why mentoring in all its forms is important for women and what Cisco is doing that's made a difference for women in tech.
LRTV Custom TV
Gigabit LTE With Snapdragon 835

7|12|17   |     |   (1) comment


At an event in Wembley stadium, EE used its live network to demonstrate gigabit LTE using a Sony Xperia XZ Premium smartphone with a Qualcomm Snapdragon 835 chip.
LRTV Custom TV
Implementing Machine Intelligence With Guavus

7|12|17   |     |   (0) comments


Guavus unites big data and machine intelligence, enabling many of the the largest service providers in the world to save money and drive measureable revenue. Learn how applying Machine Intelligence substantially reduces operational costs and in many cases can eliminate subscriber impact, meaning a better subscriber experience and higher NPS.
LRTV Custom TV
Unlocking Customer Experience Insights With Machine Intelligence

7|12|17   |     |   (0) comments


When used to analyze operational data and to drive operational decisions, machine intelligence reduces the number of tasks which require human intervention. Guavus invested in Machine Intelligence early. Learn about the difference between Machine Learning and Machine Intelligence.
Women in Comms Introduction Videos
Verizon VP Talks Network, Career Planning

7|12|17   |   4:49   |   (0) comments


Heidi Hemmer, vice president of Technology, Strategy & Planning at Verizon, shares how bold bets and the future of tech define her career.
Telecom Innovators Video Showcase
Masergy's NFV Journey

7|11|17   |     |   (0) comments


Ray Watson, vice president of global technology at Masergy, discusses the advantages and challenges in entering the still-maturing NFV market for the past three years.
Telecom Innovators Video Showcase
Mavenir on RCS Cloud Platform & Multi-ID

7|10|17   |     |   (0) comments


Guillaume Le Mener, head of marketing and corporate development at Mavenir, discussed RCS and the recent launch of Multi-ID, which supports T-Mobile's DIGITS, the revolutionary new technology that breaks down the limitation of one number per phone and one phone per number.
LRTV Custom TV
ADTRAN Executive Outlines Trends in Next-Generation 10-Gigabit Cable Networks

7|10|17   |     |   (0) comments


Hossam Salib, VP of Cable and Wireless Strategy at ADTRAN, outlines key trends as MSOs begin to deploy next-generation Gigabit and 10-Gigabit cable networks. In the interview, Hossam outlines the advantages of a Fiber Deep architecture, FTTH options including EPON and RFoG, and the importance of SDN and NFV in building next-generation high-bandwidth cable networks.
LRTV Interviews
Global Capacity: Bandwidth Demand Driving Ethernet Growth

7|6|17   |   6:37   |   (0) comments


At Light Reading's Big Communications Event in Austin, Texas, Global Capacity's VP of Marketing Mary Stanhope talks about how the demand for bandwidth is changing the way service providers deliver broadband services.
LRTV Interviews
Colt's Services Chief on Digital Delivery

7|5|17   |   16:12   |   (0) comments


Rogier Bronsgeest, the chief customer experience officer (chief CEO!) at Colt, discusses the way in which the service provider interacts with its customers these days and his aggressive net promoter score (NPS) targets.
Women in Comms Introduction Videos
BT VP: Women Should Fill Security Talent Gap

7|5|17   |   6:00   |   (2) comments


By 2020 there will be six security jobs for every qualified worker, and Kate Kuehn, vice president of Security for BT in the Americas, says BT wants to encourage women to fill the shortage in jobs.
LRTV Interviews
Colt Sales Exec on Services Trends

7|4|17   |   12:59   |   (0) comments


Colt's sales director for enterprise, James Kershaw, sheds some light on the services currently in demand and how network upgrades are influencing customer demand.
Upcoming Live Events
September 28, 2017, Denver, CO
October 18, 2017, Colorado Convention Center - Denver, CO
November 1, 2017, The Royal Garden Hotel
November 1, 2017, The Montcalm Marble Arch
November 2, 2017, 8 Northumberland Avenue, London, UK
November 30, 2017, The Westin Times Square
All Upcoming Live Events
Infographics
With the mobile ecosystem becoming increasingly vulnerable to security threats, AdaptiveMobile has laid out some of the key considerations for the wireless community.
Hot Topics
Mobile to Power Online Video Consumption – Zenith
Aditya Kishore, Practice Leader, Video Transformation, Telco Transformation, 7/19/2017
Can Mushroom Sprout in Crowded SD-WAN Field?
Carol Wilson, Editor-at-large, 7/18/2017
AI Will Be Ubiquitous in 2020 but Overhyped in 2017 – Gartner
Sarah Thomas, Director, Women in Comms, 7/18/2017
Facing the Facebook Video Threat
Gary Miles, Chief Marketing Officer, Amdocs, 7/17/2017
Brocade, Broadcom Merger in Doubt
Iain Morris, News Editor, 7/19/2017
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
Following a recent board meeting, the New IP Agency (NIA) has a new strategy to help accelerate the adoption of NFV capabilities, explains the Agency's Founder and Secretary, Steve Saunders.
One of the nice bits of my job (other than the teeny tiny salary, obviously) is that I get to pick and choose who I interview for this slot on the Light Reading home ...
Animals with Phones
Fuzzy Quick Fix Click Here
If you can't access it, is it really broken?
Live Digital Audio

Playing it safe can only get you so far. Sometimes the biggest bets have the biggest payouts, and that is true in your career as well. For this radio show, Caroline Chan, general manager of the 5G Infrastructure Division of the Network Platform Group at Intel, will share her own personal story of how she successfully took big bets to build a successful career, as well as offer advice on how you can do the same. Well cover everything from how to overcome fear and manage risk, how to be prepared for where technology is going in the future and how to structure your career in a way to ensure you keep progressing. Chan, a seasoned telecom veteran and effective risk taker herself, will also leave plenty of time to answer all your questions live on the air.