& cplSiteName &

Challenges on the Road to C-RAN Adoption

James Crawshaw

The great thing about the telecom industry is that people keep inventing new acronyms. Sometimes we lose track of what the acronym actually stands for and sometimes an acronym can mean something different to two different people. Take C-RAN for example. We all agree that RAN stands for Radio Access Network. But does the C stand for Centralized or Cloud? Perhaps China is more appropriate as that is where it seems to have originated.

The reality is that C-RAN stands for both centralized and cloud, as this Heavy Reading report from 2013 explains: C-RAN & LTE Advanced: The Road to "True 4G" & Beyond. The initial focus of C-RAN was on centralization but the end game is cloudification. The centralization phase is all about moving the base band unit (BBU) from the foot of the cell tower to a common location that serves multiple towers. This gives economies of scale in land, power and cooling costs which can be as much as two thirds of a wireless network's operational costs (unless you're in Iceland where cooling is less of an issue). Having a pool of BBUs in a secure, central location also reduces truck roll costs for maintenance.

The next phase, cloudification, is when we replace the proprietary, hardware-based BBUs with software-based BBUs (still proprietary of course) and run them on virtual machines (proprietary or open source) running on commercial off-the-shelf servers (typically using Intel's proprietary x86 processor architecture).

Not all of the functions of a BBU can be handled by COTS servers so there will still be a requirement for some proprietary hardware. A BBU fulfills several functions, some with strict real‑time constraints that require a DSP, others that can be handled with software running on standard CPUs. Non-real-time layer 2 and 3 functions may run as virtual network functions (VNFs) in the NFV cloud. However, real-time layer 1 functions (real‑time digital RF processing, alarms and error handling, error correction) are more difficult to virtualize and will thus continue to run on digital signal processors (DSPs) that are physically located with the remote radio head (RRH).

Nonetheless, a redesigned BBU can offload a lot of routine processing to COTS enabling the hardware consolidation dream of NFV. In theory this leads to both capex and opex savings versus the traditional approach of a dedicated BBU for each cell tower. This article from 2015 cites capex savings of 30% and opex savings of 53% at China Mobile.

Sounds like a no brainer, right? Well, meeting the stringent latency requirements of both TD-LTE and GSM turns out to be quite a challenge when the BBU and RRH are so far apart.

Fronthaul latency challenge
The optical fiber connecting the centralized BBU to the RRHs (power amplifiers, filters and the antenna) is known as fronthaul, a play on the more established term backhaul for the connection from BBU to the core network.

The protocol for the transmission between centralized BBU and the RRHs is either Common Protocol Radio Interface (CPRI) or Open Basestation Architecture Initiative (OBSAI). CPRI takes one optical link per cell, per carrier band and per technology. For example, a cell site with three sectors and 2G, 3G, plus two LTE bands would require 12 CPRI links in each direction: uplink and downlink. Several optical distribution technologies are available including dedicated fibers, passive WDM, active WDM, NG-PON2, and soon Ethernet fronthaul.

The trouble is, CPRI was designed for an optical link between BBU and RRH under the old, distributed architecture when the separation was typically less than 100m. With C-RAN the distance can be up to 25km which introduces more stringent requirements for round‑trip time, latency, and optical power attenuation. This makes choosing the right optical distribution technology critical. For example passive optical networks induce a significant power loss (5‑10 dB) but have low latency. Conversely, active WDM networks regenerate the signal at each hop, which eliminates the power loss issue but adds latency.

Poor FTTA install quality may come back to bite
Assuming you’ve solved the trade-off between power loss and latency with your optical network design you still have the challenge of getting it to work in the field. For many operators, C-RAN will build upon an existing fiber-to-the-antenna (FTTA) deployment program whereby the copper cables, that traditionally connected a BBU in a cabinet at the base of a tower to the RRH located at the top, are replaced by optical fiber. If the FTTA deployment is not done with sufficient care it may transpire that when the operator seeks to upgrade from FTTA to C-RAN they encounter quality issues with the last leg of optical fiber to the RRH when this is spliced to a longer optical link back to a centralized BBU. Returning to the cell site, climbing up to the antenna mast and troubleshooting the root cause of the degradation of radio performance will add significant cost to a C-RAN deployment, undermining its ROI. As my grandmother never said, "a stitch in time saves nine."

This blog is sponsored by EXFO.

— James Crawshaw, Senior Analyst, OSS/BSS Transformation, Heavy Reading

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
More Blogs from Heavy Lifting Analyst Notes
As the industry moves to 5G, the need to support reliability, low-latency, high-speed mobility, extreme density and user-level radio resource control has taken center stage.
As demand for 100G to 400G network interfaces grows, companies are meeting the challenge and many operators are already making the transition to 400G.
Telcos can make their networks more agile and efficient by learning from their web-scale counterparts.
The most recent Thought Leadership Council (TLC) survey finds that communications service providers (CSPs) that are specialists in the Internet of Things (IoT) think they are doing quite well with their Internet security plans and implementation, though most still believe there is room for improvement.
ON2020 is running a workshop at OFC where speakers from leading operators will share their visions and discuss roadmaps for optical networking.
Featured Video
From The Founder
Light Reading founder Steve Saunders recently visited the University of North Carolina Charlotte (UNCC) where Cisco's Tetration application is providing data center analytics, simplifying SDN, helping with cloud migration and overseeing white-list security policy.
Flash Poll
Upcoming Live Events
March 20-22, 2018, Denver Marriott Tech Center
March 22, 2018, Denver, Colorado | Denver Marriott Tech Center
March 28, 2018, Kansas City Convention Center
April 4, 2018, The Westin Dallas Downtown, Dallas
April 9, 2018, Las Vegas Convention Center
May 14-16, 2018, Austin Convention Center
May 14, 2018, Brazos Hall, Austin, Texas
September 24-26, 2018, Westin Westminster, Denver
October 9, 2018, The Westin Times Square, New York
October 23, 2018, Georgia World Congress Centre, Atlanta, GA
November 7-8, 2018, London, United Kingdom
November 8, 2018, The Montcalm by Marble Arch, London
November 15, 2018, The Westin Times Square, New York
December 4-6, 2018, Lisbon, Portugal
All Upcoming Live Events
Hot Topics
AT&T Likens DoJ Suit to Shaved Persian Cat
Mari Silbey, Senior Editor, Cable/Video, 3/12/2018
Trump Blocks Broadcom's Qualcomm Acquisition
Dan Jones, Mobile Editor, 3/12/2018
John Deere Bets the Farm on AI, IoT
Scott Ferguson, Editor, Enterprise Cloud, 3/12/2018
Rumor Mill: SoftBank Still Eyeing Charter
Mari Silbey, Senior Editor, Cable/Video, 3/12/2018
Animals with Phones
Live Digital Audio

A CSP's digital transformation involves so much more than technology. Crucial – and often most challenging – is the cultural transformation that goes along with it. As Sigma's Chief Technology Officer, Catherine Michel has extensive experience with technology as she leads the company's entire product portfolio and strategy. But she's also no stranger to merging technology and culture, having taken a company — Tribold — from inception to acquisition (by Sigma in 2013), and she continues to advise service providers on how to drive their own transformations. This impressive female leader and vocal advocate for other women in the industry will join Women in Comms for a live radio show to discuss all things digital transformation, including the cultural transformation that goes along with it.

Like Us on Facebook
Twitter Feed