& cplSiteName &

Fujitsu Labs Develops 56G Receiver Circuit for Server Comms

Light Reading
News Wire Feed
Light Reading
6/13/2014
50%
50%

KAWASAKI, Japan -- Fujitsu Laboratories Ltd. today announced the development of a receiver circuit capable of receiving communications at 56 Gbps. This marks the world's fastest data communications between CPUs equipped in next-generation servers.

In recent years, raising data-processing speeds in servers has meant increasing CPU performance, together with boosting the speed of data communications between chips, such as CPUs. However, one obstacle to this has been improving the performance of the circuits that correct degraded waveforms in incoming signals.

Fujitsu Laboratories has used a new "look-ahead" architecture in the circuit that compensates for quality degradation in incoming signals, parallelizing the processing and increasing the operating frequency for the circuit in order to double its speed.

This technology holds the promise of increasing the performance of next-generation servers and supercomputers.

Details of this technology are being presented at the 2014 Symposia on VLSI Technology and Circuits, opening June 9 in Hawaii (VLSI Circuits Presentation 11-2).

In order to enhance the performance of datacenters underpinning the spread of cloud computing in recent years, a need has arisen for servers that process data faster. While this can be achieved partly through faster CPUs, large-scale systems connecting many CPUs are also being built, and the amount of data transmitted, either within the same CPU-equipped chassis or across separate chassis, is growing dramatically. To cope with these volumes, data communication speeds in the current generation of servers is increasing from a few gigabits per second today to ten or more gigabits per second. Because it is anticipated that data processing volumes will continue to experience explosive growth, however, for the next generation of high-performance servers, the goal is to double current levels to 56 Gbps. Furthermore, the Optical Internetworking Forum (OIF) is moving forward on the standardization of 56 Gbps for the optical modules used for optical transmission between chassis.

An effective way to speed up the receiver circuit is to improve the processing performance of the decision feedback equalizer (DFE) circuit that compensates for the degraded input-signal waveform (Figure 2).The principle behind DFE is to correct the input signal based on the bit-value of the previous bit and to emphasize changes in the input signal, but the actual circuit design works by choosing between two predefined corrected candidates. If the previous bit value was a 0, the correction process would apply a positive correction to the input signal (additive) to emphasize the change from 0 to 1. If the previous bit value was 1, it would apply a negative correction to the input signal (subtractive) to emphasize the change from 1 to 0. If another 0 was received, the positive compensation would increase the signal level, but not to such a level as would create a problem for the 1/0 decision circuit.

In ordinary circuit designs that run at 56 Gbps, there are 16 DFE circuits coupled together. Using 4 DFE circuits as an example, they run at 1/4th the actual frequency. So for 28-Gbps communications rates, 1/4th of that is 142 picoseconds, and four bits-worth of compensation can be applied during that interval. But at 56 Gbps, 1/4th of that speed amounts to 71 picoseconds, during which time only 2 bits-worth of compensation can be applied, resulting in timing errors (Figure 3).

Fujitsu Laboratories took a new approach, a "look-ahead" method that can be implemented as a parallel process, pre-calculating two candidates based on the selection result for the previous bit, and simultaneously deciding the value of the previous bit and the current bit after deciding the value of the bit two bits previous. This shortens calculation times, resulting in a receiver circuit that can operate at 56 Gbps (Figure 4).

Features of the new technology are as follows:

1. Look-ahead compensation process

In the existing method, the result of the previous bit's selection circuit (A) is implemented by a circuit combining the result of the selection circuit for the bit two bits previous (B) and the input signal for the selection circuit one bit previous (+/- compensation data) (C). In the look-ahead method, the input signal for the selection circuit one bit previous (+/- compensation data) (D) and the input signal for the selection circuit of the current bit (+/- compensation data) (E) are combined using a look-ahead circuit, and candidates for the selection circuit are pre-computed. Doing this relies on only the result from the selection circuit for the bit two bits previous, without using the result from the selection circuit for the bit one bit previous, while functioning essentially the same as the existing method.

2. Parallelized look-ahead processing using a hold circuit

Multiple look-ahead circuits that apply DFE one bit at a time can operate independently (Figure 5). Fujitsu Laboratories inserted a hold circuit between the selection circuit and look-ahead circuit, with the input and output of each hold circuit being synchronized, making it possible to parallelize these processes.

Because the calculation time for the look-ahead circuit is roughly the same as the selection time for the selector, overall calculation time is dependent on the number of selectors deciding based on data from two bits previous, so in a four-bit structure, that would be two. Running at 1/4th of 56 Gbps allows computations to be safely completed within 71 picoseconds. This makes it possible to receive data at 56 Gbps, doubling existing communications speeds.

This technology makes it possible to increase bandwidth of communications between CPUs in future servers and supercomputers, even if CPU performance doubles, without increasing pin counts, and will contribute to increased performance in large-scale systems where numerous CPUs are interconnected.

In addition, it complies with standards for optical-module communications, and compared to the 400-Gbps Ethernet in OIF-CEI-28G optical-module communications, the number of circuits running in parallel (number of lanes) can be halved, allowing for smaller optical modules running on less power, and higher system performance.

Fujitsu Laboratories plans to apply this technology to the interfaces of CPUs and optical modules, with the goal of a practical implementation in fiscal 2016. The company is also considering applications to next-generation servers, supercomputers, and other products.

Fujitsu Laboratories Ltd.

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
From The Founder
The independent evaluation of Nokia's key virtual network functions (VNFs) was a defining moment for the Finnish giant.
Flash Poll
Live Streaming Video
Charting the CSP’s Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it’s going from two industry veterans.
LRTV Custom TV
Cisco's Innovations in Cable

5|26|16   |   03:18   |   (0) comments


Marc Aldrich from Cisco discusses the latest in security, the evolution and momentum for CCAP and what the industry will be seeing next from Cisco.
LRTV Documentaries
Leading Lights 2016 Highlights

5|25|16   |   02:26   |   (1) comment


Some of the high points from this year's Leading Lights awards dinner at the Hotel Ella in Austin, Texas.
LRTV Documentaries
Light Reading Hall of Fame 2016

5|23|16   |   05:43   |   (0) comments


Find out who has been welcomed into Light Reading's Hall of Fame this year.
LRTV Custom TV
ZTE TM Forum Highlights

5|23|16   |     |   (0) comments


ZTE showcased its new ICT solutions at TM Forum in Nice.
LRTV Interviews
Gamma's MD on the Emergence of UC2

5|20|16   |     |   (0) comments


Gamma Communications Managing Director David Macfarlane believes the unified communications (UC) market has reached a tipping point.
LRTV Custom TV
The Ultimate 5-Minute Guide to Digital Customer Engagement

5|20|16   |     |   (0) comments


In this short video, you will hear all about how Digital Customer Engagement is the key to meeting customer expectations, keeping them happy, and maximizing revenue. VP Product & Marketing at Pontis, Ofer Razon, breaks down for us the five essential capabilities for successful Digital Customer Engagement. Don’t miss!
LRTV Custom TV
NFV in 2016: Part 1 – NFV Use Cases Get Real

5|19|16   |   05:57   |   (0) comments


Consensus is building around the key use cases for NFV, including managed IP services at the network edge and on customer premises, which can generate new revenues from enterprises/SMBs and consumers; Evolved Packet Core to support LTE migration; and adjacent technologies, such as TAS and IMS, to support VoLTE and next-generation charging and policy control ...
LRTV Custom TV
Nokia's Steve Vogelsang on NFV – Part 3

5|19|16   |     |   (0) comments


Steve Vogelsang discusses the challenges of operational transformation and how Nokia helps its customers. Join Steve at the Big Communications Event in Austin the morning of May 24, on his keynote and optical networking panel.
LRTV Interviews
Level 3: Why UC Is In Demand

5|17|16   |   04:12   |   (1) comment


Andrew Edison, Level 3's senior VP of sales, EMEA region, talks about the drivers of growth in the unified communications services market.
LRTV Custom TV
ARM's OPNFV Action

5|17|16   |     |   (0) comments


At the ARM booth at MWC 2016, Joe Kidder and Bob Monkman speak to Light Reading about OPNFV and their upcoming action.
LRTV Custom TV
Nokia's Steve Vogelsang on NFV – Part 2

5|16|16   |     |   (0) comments


Steve Vogelsang gives advice to service providers on how to move to NFV. Join Steve at the Big Communications Event in Austin the morning of May 24, on his keynote and optical networking panel.
LRTV Interviews
Interoute CTO on NFV's Maturity

5|13|16   |   06:46   |   (1) comment


Matt Finnie, CTO at international operator Interoute, explains how NFV has made life easier in terms of logistics and how Interoute can now enable a 'software-defined moment' for its customers.
Upcoming Live Events
September 13-14, 2016, The Curtis Hotel, Denver, CO
December 6-8, 2016,
June 16-18, 2017, Austin Convention Center, Austin, TX
All Upcoming Live Events
Infographics
A new survey conducted by Heavy Reading and TM Forum shows that CSPs around the world see the move to digital operations as a necessary part of their overall virtualization strategies.
Hot Topics
DT: Telcos Must Escape Vendor Prison
Iain Morris, News Editor, 5/24/2016
AT&T to Start 5G 'Friendly' Trial by 2016 End
Dan Jones, Mobile Editor, 5/24/2016
Cisco's Patel Hails 'Microculture' Successes
Iain Morris, News Editor, 5/26/2016
Cable Is Eyeing Its Retail Options
Mari Silbey, Senior Editor, Cable/Video, 5/25/2016
AT&T's Margaret Chiosi Retires
Ray Le Maistre, Editor-in-chief, 5/25/2016
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
In this latest installment of the CEO Chat series, Craig Labovitz, co-founder and CEO of Deepfield, sits down with Light Reading's Steve Saunders in Light Reading's New York City office to discuss how Deepfield fits in with the big data trend and more.
Grant van Rooyen, president and CEO of Cologix, sits down with Steve Saunders, founder and CEO of Light Reading, in the vendor's New Jersey facility to offer an inside look at the company's success story and discuss the importance of security in the telecom industry.
Animals with Phones
Live Digital Audio

Our world has evolved through innovation from the Industrial Revolution of the 1740s to the information age, and it is now entering the Fourth Industrial Revolution, driven by technology. Technology is driving a paradigm shift in the way digital solutions deliver a connected world, changing the way we live, communicate and provide solutions. It can have a powerful impact on how we tackle some of the world’s most pressing problems. In this radio show, Caroline Dowling, President of Communications Infrastructure & Enterprise Computing at Flex, will join Women in Comms Director Sarah Thomas to discuss the impact technology has on society and how it can be a game-changer across the globe; improving lives and creating a smarter world. Dowling, a Cork, Ireland, native and graduate of Harvard Business School's Advanced Management Program, will also discuss her experience managing an international team focused on innovation in an age of high-speed change.