& cplSiteName &

Fujitsu Labs Develops 56G Receiver Circuit for Server Comms

Light Reading
News Wire Feed
Light Reading
6/13/2014
50%
50%

KAWASAKI, Japan -- Fujitsu Laboratories Ltd. today announced the development of a receiver circuit capable of receiving communications at 56 Gbps. This marks the world's fastest data communications between CPUs equipped in next-generation servers.

In recent years, raising data-processing speeds in servers has meant increasing CPU performance, together with boosting the speed of data communications between chips, such as CPUs. However, one obstacle to this has been improving the performance of the circuits that correct degraded waveforms in incoming signals.

Fujitsu Laboratories has used a new "look-ahead" architecture in the circuit that compensates for quality degradation in incoming signals, parallelizing the processing and increasing the operating frequency for the circuit in order to double its speed.

This technology holds the promise of increasing the performance of next-generation servers and supercomputers.

Details of this technology are being presented at the 2014 Symposia on VLSI Technology and Circuits, opening June 9 in Hawaii (VLSI Circuits Presentation 11-2).

In order to enhance the performance of datacenters underpinning the spread of cloud computing in recent years, a need has arisen for servers that process data faster. While this can be achieved partly through faster CPUs, large-scale systems connecting many CPUs are also being built, and the amount of data transmitted, either within the same CPU-equipped chassis or across separate chassis, is growing dramatically. To cope with these volumes, data communication speeds in the current generation of servers is increasing from a few gigabits per second today to ten or more gigabits per second. Because it is anticipated that data processing volumes will continue to experience explosive growth, however, for the next generation of high-performance servers, the goal is to double current levels to 56 Gbps. Furthermore, the Optical Internetworking Forum (OIF) is moving forward on the standardization of 56 Gbps for the optical modules used for optical transmission between chassis.

An effective way to speed up the receiver circuit is to improve the processing performance of the decision feedback equalizer (DFE) circuit that compensates for the degraded input-signal waveform (Figure 2).The principle behind DFE is to correct the input signal based on the bit-value of the previous bit and to emphasize changes in the input signal, but the actual circuit design works by choosing between two predefined corrected candidates. If the previous bit value was a 0, the correction process would apply a positive correction to the input signal (additive) to emphasize the change from 0 to 1. If the previous bit value was 1, it would apply a negative correction to the input signal (subtractive) to emphasize the change from 1 to 0. If another 0 was received, the positive compensation would increase the signal level, but not to such a level as would create a problem for the 1/0 decision circuit.

In ordinary circuit designs that run at 56 Gbps, there are 16 DFE circuits coupled together. Using 4 DFE circuits as an example, they run at 1/4th the actual frequency. So for 28-Gbps communications rates, 1/4th of that is 142 picoseconds, and four bits-worth of compensation can be applied during that interval. But at 56 Gbps, 1/4th of that speed amounts to 71 picoseconds, during which time only 2 bits-worth of compensation can be applied, resulting in timing errors (Figure 3).

Fujitsu Laboratories took a new approach, a "look-ahead" method that can be implemented as a parallel process, pre-calculating two candidates based on the selection result for the previous bit, and simultaneously deciding the value of the previous bit and the current bit after deciding the value of the bit two bits previous. This shortens calculation times, resulting in a receiver circuit that can operate at 56 Gbps (Figure 4).

Features of the new technology are as follows:

1. Look-ahead compensation process

In the existing method, the result of the previous bit's selection circuit (A) is implemented by a circuit combining the result of the selection circuit for the bit two bits previous (B) and the input signal for the selection circuit one bit previous (+/- compensation data) (C). In the look-ahead method, the input signal for the selection circuit one bit previous (+/- compensation data) (D) and the input signal for the selection circuit of the current bit (+/- compensation data) (E) are combined using a look-ahead circuit, and candidates for the selection circuit are pre-computed. Doing this relies on only the result from the selection circuit for the bit two bits previous, without using the result from the selection circuit for the bit one bit previous, while functioning essentially the same as the existing method.

2. Parallelized look-ahead processing using a hold circuit

Multiple look-ahead circuits that apply DFE one bit at a time can operate independently (Figure 5). Fujitsu Laboratories inserted a hold circuit between the selection circuit and look-ahead circuit, with the input and output of each hold circuit being synchronized, making it possible to parallelize these processes.

Because the calculation time for the look-ahead circuit is roughly the same as the selection time for the selector, overall calculation time is dependent on the number of selectors deciding based on data from two bits previous, so in a four-bit structure, that would be two. Running at 1/4th of 56 Gbps allows computations to be safely completed within 71 picoseconds. This makes it possible to receive data at 56 Gbps, doubling existing communications speeds.

This technology makes it possible to increase bandwidth of communications between CPUs in future servers and supercomputers, even if CPU performance doubles, without increasing pin counts, and will contribute to increased performance in large-scale systems where numerous CPUs are interconnected.

In addition, it complies with standards for optical-module communications, and compared to the 400-Gbps Ethernet in OIF-CEI-28G optical-module communications, the number of circuits running in parallel (number of lanes) can be halved, allowing for smaller optical modules running on less power, and higher system performance.

Fujitsu Laboratories plans to apply this technology to the interfaces of CPUs and optical modules, with the goal of a practical implementation in fiscal 2016. The company is also considering applications to next-generation servers, supercomputers, and other products.

Fujitsu Laboratories Ltd.

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
From The Founder
Light Reading today starts a new voyage as part of a larger Enterprise.
Flash Poll
Live Streaming Video
Charting the CSP's Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it's going from two industry veterans.
LRTV Interviews
No Stopping Cable's Ethernet Gains

12|9|16   |     |   (0) comments


Vertical Systems' Erin Dunne explains why US cable operators, which now command a record-high 26% of the Ethernet market, will keep boosting their share.
LRTV Interviews
Fixing IoT Security Is an Ecosystem Challenge

12|9|16   |   05:34   |   (1) comment


Level 3 Communications' Chief Security Officer Dale Drew says service providers, manufacturers and even consumers must combine to halt massive DDoS attacks using IoT devices in botnets. The solution he has in mind includes reputation-based routing by the service provider but also more secure endpoint devices and greater consumer awareness.
LRTV Interviews
Cox Clears $2B in Business Revenue

12|8|16   |     |   (0) comments


Cox's Jeff Breaux discusses how the third-largest US MSO will reach the $2 billion revenue mark this year and plans to hit $3 billion by 2021
LRTV Interviews
Can Cable Climb Upmarket?

12|7|16   |     |   (0) comments


Carol Wilson and Alan Breznick assess cable's prospects for winning more enterprises in a landscape rocked by corporate M&A activity.
Women in Comms Introduction Videos
TalkTalk Exec: Find Your North Star at Work

12|7|16   |   3:38   |   (1) comment


Women need to find their purpose, a professional North Star, and create a personal board for themselves, according to Alex Tempest, director of partners at TalkTalk Business.
LRTV Interviews
Verizon: Beware Unknown Unknowns

12|7|16   |   04:58   |   (0) comments


Chris Novak, director of the Verizon Enterprise Solutions Risk Team, explains that enterprises who don't conduct a thorough audit of their assets often leave some things unprotected because they don't know they exist. Many times these unprotected assets are part of corporate M&A activity but left unshielded they can become a hacker's playground, he tells Light ...
LRTV Interviews
ETSI's CTO Talks NFV, 5G & NGP

12|5|16   |   09:45   |   (0) comments


Adrian Scrase, CTO at standards body ETSI, talks about the various initiatives and specifications developments related to NFV, 5G and NGP (next-generation protocols) that will underpin next-gen networks.
Women in Comms Introduction Videos
Korn Ferry Consultant: How to Find, Cultivate & Be the Best Talent

11|30|16   |   4:10   |   (2) comments


Erin Callaghan, a managing consultant for Korn Ferry Futurestep, shares strategies for companies to improve how they recruit and for women to ensure they don't get lost in the pipeline.
LRTV Custom TV
We Can Make the World More Sustainable

11|29|16   |     |   (0) comments


GeSI is a global e-Sustainability Initiative organization bringing together 40 big multinational companies around the world. According to GeSI's report, information and communication technology can make the world more sustainable. Luis Neves, chairman of GeSI, shared with us his opinion at Ultra-broadband Forum (UBBF2016).
LRTV Custom TV
Finding a New Way to Engage Customers & Drive Revenue

11|29|16   |     |   (0) comments


Mobile revenues are declining. Digicel, a player in the Caribbean telecommunications/entertainment space, has found a new way to engage customers and drive revenue. John Quinn, CTO of Digicel, shared with us its story at Ultra-broadband Forum (UBBF2016)
LRTV Custom TV
Do You Really Need Gigabit Infrastructure?

11|29|16   |     |   (0) comments


Altibox is the biggest fiber-to-the-home (FTTH) player and the largest provider of video and TV in Norway. They started out with zero customers in 2002. Now they have close to half a million households and companies attached to their FTTH business. Nils Arne, CEO of Altibox shared with us their story and insight on 5G at Ultra-broadband Forum (UBBF2016).
LRTV Custom TV
BTís Openreach Strategy & Its Updates in 2016

11|29|16   |     |   (0) comments


A lot of developments at Openreach this year in terms of strategy and planned investments. Peter Bell, CIO of Openreach BT, shared with us the updates of Openreach at Ultra-broadband Forum (UBBF2016).
Upcoming Live Events
May 16-17, 2017, Austin Convention Center, Austin, TX
All Upcoming Live Events
Infographics
Hot Topics
Cable Nodes Becoming a Choke Point
Brian Santo, Senior editor, Test & Measurement / Components, Light Reading, 12/5/2016
Consolidated Snaps Up Fairpoint for $1.5B
Iain Morris, News Editor, 12/5/2016
Small Arctic ISP Caches Netflix in New Way
Mari Silbey, Senior Editor, Cable/Video, 12/7/2016
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
Eyal Waldman, CEO of Mellanox Technologies, speaks to Steve Saunders, CEO of Light Reading, for an exclusive interview about the 100 GB cable challenge, cybersecurity and much more.
Join us for an in-depth interview between Steve Saunders of Light Reading and Alexis Black Bjorlin of Intel as they discuss the release of the company's Silicon Photonics platform, its performance, long-term prospects, customer expectations and much more.
Animals with Phones
A Mobile Safari Click Here
Literally.
Latest Comment
Live Digital Audio

Even when there's a strong pipeline of female talent in the comms industry, it tends to leak all the way to the top. McKinsey & Company says women experience pipeline leakage at three primary points: being unable to enter, being stuck in the middle or being locked out of the top. Each pipeline pain point presents its own challenges, but also opportunities to stop the leak. Wireless operator Sprint is making a conscious effort to improve its own pipeline from new recruits to the C-suite, and it wants the rest of the industry to do the same. In this Women in Comms radio show, WiC Board Member and Sprint Vice President of Enterprise Sales Nelly Pitocco will give us her take on the industry's pipeline challenges. Pitocco, who joined Sprint in May and has spent 20 years in the comms industry, will also offer solutions, share how Sprint is tackling the challenge within its own organization and take your questions live on air.