Light Reading
Claims world's fastest data communications between CPUs equipped in next-generation servers.

Fujitsu Labs Develops 56G Receiver Circuit for Server Comms

Light Reading
News Wire Feed
Light Reading
6/13/2014
50%
50%

KAWASAKI, Japan -- Fujitsu Laboratories Ltd. today announced the development of a receiver circuit capable of receiving communications at 56 Gbps. This marks the world's fastest data communications between CPUs equipped in next-generation servers.

In recent years, raising data-processing speeds in servers has meant increasing CPU performance, together with boosting the speed of data communications between chips, such as CPUs. However, one obstacle to this has been improving the performance of the circuits that correct degraded waveforms in incoming signals.

Fujitsu Laboratories has used a new "look-ahead" architecture in the circuit that compensates for quality degradation in incoming signals, parallelizing the processing and increasing the operating frequency for the circuit in order to double its speed.

This technology holds the promise of increasing the performance of next-generation servers and supercomputers.

Details of this technology are being presented at the 2014 Symposia on VLSI Technology and Circuits, opening June 9 in Hawaii (VLSI Circuits Presentation 11-2).

In order to enhance the performance of datacenters underpinning the spread of cloud computing in recent years, a need has arisen for servers that process data faster. While this can be achieved partly through faster CPUs, large-scale systems connecting many CPUs are also being built, and the amount of data transmitted, either within the same CPU-equipped chassis or across separate chassis, is growing dramatically. To cope with these volumes, data communication speeds in the current generation of servers is increasing from a few gigabits per second today to ten or more gigabits per second. Because it is anticipated that data processing volumes will continue to experience explosive growth, however, for the next generation of high-performance servers, the goal is to double current levels to 56 Gbps. Furthermore, the Optical Internetworking Forum (OIF) is moving forward on the standardization of 56 Gbps for the optical modules used for optical transmission between chassis.

An effective way to speed up the receiver circuit is to improve the processing performance of the decision feedback equalizer (DFE) circuit that compensates for the degraded input-signal waveform (Figure 2).The principle behind DFE is to correct the input signal based on the bit-value of the previous bit and to emphasize changes in the input signal, but the actual circuit design works by choosing between two predefined corrected candidates. If the previous bit value was a 0, the correction process would apply a positive correction to the input signal (additive) to emphasize the change from 0 to 1. If the previous bit value was 1, it would apply a negative correction to the input signal (subtractive) to emphasize the change from 1 to 0. If another 0 was received, the positive compensation would increase the signal level, but not to such a level as would create a problem for the 1/0 decision circuit.

In ordinary circuit designs that run at 56 Gbps, there are 16 DFE circuits coupled together. Using 4 DFE circuits as an example, they run at 1/4th the actual frequency. So for 28-Gbps communications rates, 1/4th of that is 142 picoseconds, and four bits-worth of compensation can be applied during that interval. But at 56 Gbps, 1/4th of that speed amounts to 71 picoseconds, during which time only 2 bits-worth of compensation can be applied, resulting in timing errors (Figure 3).

Fujitsu Laboratories took a new approach, a "look-ahead" method that can be implemented as a parallel process, pre-calculating two candidates based on the selection result for the previous bit, and simultaneously deciding the value of the previous bit and the current bit after deciding the value of the bit two bits previous. This shortens calculation times, resulting in a receiver circuit that can operate at 56 Gbps (Figure 4).

Features of the new technology are as follows:

1. Look-ahead compensation process

In the existing method, the result of the previous bit's selection circuit (A) is implemented by a circuit combining the result of the selection circuit for the bit two bits previous (B) and the input signal for the selection circuit one bit previous (+/- compensation data) (C). In the look-ahead method, the input signal for the selection circuit one bit previous (+/- compensation data) (D) and the input signal for the selection circuit of the current bit (+/- compensation data) (E) are combined using a look-ahead circuit, and candidates for the selection circuit are pre-computed. Doing this relies on only the result from the selection circuit for the bit two bits previous, without using the result from the selection circuit for the bit one bit previous, while functioning essentially the same as the existing method.

2. Parallelized look-ahead processing using a hold circuit

Multiple look-ahead circuits that apply DFE one bit at a time can operate independently (Figure 5). Fujitsu Laboratories inserted a hold circuit between the selection circuit and look-ahead circuit, with the input and output of each hold circuit being synchronized, making it possible to parallelize these processes.

Because the calculation time for the look-ahead circuit is roughly the same as the selection time for the selector, overall calculation time is dependent on the number of selectors deciding based on data from two bits previous, so in a four-bit structure, that would be two. Running at 1/4th of 56 Gbps allows computations to be safely completed within 71 picoseconds. This makes it possible to receive data at 56 Gbps, doubling existing communications speeds.

This technology makes it possible to increase bandwidth of communications between CPUs in future servers and supercomputers, even if CPU performance doubles, without increasing pin counts, and will contribute to increased performance in large-scale systems where numerous CPUs are interconnected.

In addition, it complies with standards for optical-module communications, and compared to the 400-Gbps Ethernet in OIF-CEI-28G optical-module communications, the number of circuits running in parallel (number of lanes) can be halved, allowing for smaller optical modules running on less power, and higher system performance.

Fujitsu Laboratories plans to apply this technology to the interfaces of CPUs and optical modules, with the goal of a practical implementation in fiscal 2016. The company is also considering applications to next-generation servers, supercomputers, and other products.

Fujitsu Laboratories Ltd.

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View
Flash Poll
LRTV Custom TV
A New Security Paradigm in SDN/NFV

7|28|14   |   02:54   |   (0) comments


Paul Shaneck, Global Director Network Solutions for Symantec, discusses the evolving virtualized network, explaining how Symantec is leading the security discussion as it relates to SDN and NFV, and helping to ensure the network is protected and compliant.
LRTV Documentaries
Sprint's Network Evolution

7|24|14   |   14:59   |   (0) comments


Sprint's Jay Bluhm gives a keynote speech at the Big Telecom Event (BTE) about Sprint's network and services evolution strategy, including Spark.
LRTV Documentaries
BTE Keynote: The Software-Defined Operator

7|24|14   |   18:43   |   (1) comment


Deutsche Telekom's Axel Clauberg explains the concept of the software-defined operator to the Big Telecom Event (BTE) crowd.
Light Reedy
Numbers Are In: LR's 2014 Salary Survey

7|24|14   |   1:25   |   (7) comments


Our fourth annual Salary Survey paints a picture of who's hiring, firing, earning, and yearning for a change in the telecom industry.
LRTV Custom TV
Driving the Network Transformation

7|23|14   |   4:29   |   (0) comments


Intel's Sandra Rivera discusses network transformation and how Intel technologies, programs, and standards body efforts have helped the industry migration to SDN and NFV.
LRTV Custom TV
Distributed NFV-Based Business Services by RAD

7|18|14   |   5:38   |   (0) comments


With the ETSI-approved Distributed NFV PoC running in the background, RAD's CEO, Dror Bin, talks about why D-NFV makes compelling sense for service providers, and about the dollars and cents RAD is putting behind D-NFV.
LRTV Custom TV
MRV – Accelerating Packet Optical Convergence

7|15|14   |   6:06   |   (0) comments


Giving you network insight to make your network smarter.
LRTV Custom TV
NFV-Enabled Ethernet for Generating New Revenues

7|15|14   |   5:49   |   (0) comments


Cyan's Planet Orchestrate allows service providers and their end-customers to activate software-based capabilities such as firewalls and encryption on top of existing Ethernet services in just minutes.
LRTV Custom TV
Symkloud NVF-Ready Video Transcoding, Big Data

7|9|14   |   3:41   |   (0) comments


Kontron and ISV partner Vantrix demonstrate high-performance video transcoding and data analytic solutions on same 2U standard platform that is ready for SDN and NFV deployments made by mobile, cable and cloud operators.
LRTV Huawei Video Resource Center
The Evolving Role of Hybrid Video for Competitive Success

7|4|14   |   4:09   |   (0) comments


At Huawei's Global Analysts Summit in Shenzhen, China, Steven C. Hawley from TV Strategies speaks to us about the evolving role of hybrid video for competitive success.
LRTV Huawei Video Resource Center
How CSPs Leverage Big Data in the Digital Economy

7|4|14   |   4:48   |   (2) comments


Justin van der Lande from Analysys Mason shares with us his views on how telecom operators can leverage customer asset monetization with big data. His discusses the current status of big data applications and the challenges and opportunities for telecom operators in the digital economy era.
LRTV Huawei Video Resource Center
Accelerator for Digital Business – Future Oriented BSS

7|4|14   |   3:08   |   (0) comments


Mobile and internet are becoming intertwined; IT and CT are integrating; and leading CSPs have begun to transform to information service and entertainment providers. How should the BSS system evolve to enable this transformation? Karl Whitelock, an analyst at Frost & Sullivan, shares his views.
Upcoming Live Events!!
September 16, 2014, Santa Clara, CA
September 16, 2014, Santa Clara, CA
October 29, 2014, New York City
November 6, 2014, Santa Clara
November 11, 2014, Atlanta, GA
December 9-10, 2014, Reykjavik, Iceland
June 9-10, 2015, Chicago, IL
Infographics
Packet Design asks network professionals how they handle the cloud, SDN, and network management.
Today's Cartoon
Vacation Special Caption Competition Click Here
Latest Comment
Hot Topics
Is Windstream Boldly Setting a New Trend?
Carol Wilson, Editor-at-large, 7/29/2014
Sprint, T-Mobile: The Price War's On
Sarah Reedy, Senior Editor, 7/30/2014
Pics From Comic-Con -- Honest!
Mitch Wagner, West Coast Bureau Chief, Light Reading, 7/30/2014
If Not Muni Networks, Then What?
Carol Wilson, Editor-at-large, 7/28/2014
Utilities Drive Connected Cars Into the Smart Grid
Jason Meyers, Senior Editor, Utility Communications/IoT, 7/31/2014
Like Us on Facebook
Twitter Feed