& cplSiteName &

Wavelength Division Multiplexing (WDM)

Light Reading
Beginners' Guides
Light Reading
8/2/2001
50%
50%

Before reading this you may find the following tutorials useful:
Optical Networks, Optical Fiber

As an optical network consists of optical fibers carrying flashes of light from a laser, you can improve the speed of information transfer by increasing the number of laser light flashes per second (increasing the bit-rate). However, a point comes at which the technology of lasers cannot meet the demands of an optical network. Just as with the lone, dirty old man that flashes at passersby in the park — he can only flash so fast. But what if this man were to invite a group of his dirty old friends? Now they could all flash at the same time and vastly increase the amount of information they are transmitting to the innocent people walking by.

In an optical network, you can increase the number of lasers and have them all sending their light down the optical fiber at the same time. However, there is a catch. If the dirty old man and his friends were all wearing the same color of trench coat, then people would not be able to distinguish the different sources of information. So each flasher would need to have his own color of trench coat, to make sure that his information is not confused with that of the others. Similarly, all the different lasers must give out different colors (different wavelengths) of light so that their information can be separated at the other end of the network. The sending of many different wavelengths down the same optical fiber is known as Wavelength Division Multiplexing (WDM).

Modern networks in which individual lasers can transmit at 10 Gigabits per second can now have several different lasers each giving out 10 Gbit/s through the same fiber at the same time. The number of wavelengths is usually a power of 2 for some reason. So WDM systems will use two different wavelengths, or 4, 16, 32, 64, 128, etc. Systems being deployed at present will usually have no more than maybe 32 wavelengths, but technology advancements will continue to make a higher number of wavelengths possible.

Wavelength Division Multiplexing

The act of combining several different wavelengths on the same fiber is known as multiplexing. At the receiving end, these wavelengths need to be separated again, which is known, logically enough, as demultiplexing. Each wavelength will then need its own light detector to convert it back into useful information.

A WDM System

The exact wavelengths of light being used are usually around the 1550 nanometer region, the wavelength region in which optical fiber performs the best (it has very “low loss” or “low attenuation” at this wavelength). Each different wavelength will be separated by a multiple of 0.8nm (sometimes referred to as “100GHz spacing,” which is the frequency separation; or as the “ITU-Grid,” named after the standards body that set the figure). So if you have four wavelengths you may have them at 1549.2nm, 1550nm, 1550.8nm, and 1551.6nm. However, you could also separate each by 1.6nm, or even 2.4nm, as long as it is some multiple of 0.8nm. Newer designs that aim to cram even more wavelengths into an even tighter space, may even have half the regular spacing (0.4nm) or a quarter (0.2nm). There can be problems with wavelengths spreading out (known as dispersion) and affecting neighboring wavelengths; so this and other more complicated issues need to be considered carefully when designing a WDM system.

Key Points

  • Increases capacity of optical fibers
  • Different wavelength lasers each transmitting at same time down same fiber
  • 'Multiplexing' is combining wavelengths; 'demultiplexing' is splitting wavelengths
  • Usually in powers of 2 — 2, 4, 8, 16, 32, 64, 128, etc. wavelengths
  • Wavelengths separated by multiples of 0.8nm (100GHz, ITU-Grid)


Further Reading

Laser Basics, Tunable Lasers, Nonlinear Effects, Optical Amplification
(149)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
Page 1 / 15   >   >>
rubyliu
50%
50%
rubyliu,
User Rank: Light Beer
5/29/2014 | 4:05:26 AM
re: Wavelength Division Multiplexing (WDM)
In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (colours) of laser light. This technique enables bidirectional communications over one strand of fiber, as well as multiplication of capacity.@fiberstore.com
zataki
50%
50%
zataki,
User Rank: Light Beer
12/5/2012 | 3:27:28 AM
re: Wavelength Division Multiplexing (WDM)
Another option for this is to have a WDM coupler such as a 1310/1550 coupler. with this device it does not matter what direction the traffic is travelling in. The TX and RX can easily co-exist on the same fiber.
tony33
50%
50%
tony33,
User Rank: Light Beer
12/5/2012 | 1:19:32 AM
re: Wavelength Division Multiplexing (WDM)
test
alvind
50%
50%
alvind,
User Rank: Light Beer
12/5/2012 | 1:12:31 AM
re: Wavelength Division Multiplexing (WDM)
If I send different wavelength lasers from either ends on the same fibre simultaneousely, will it be possible to recover them on the other sides using refraction or something ?
PO
50%
50%
PO,
User Rank: Light Beer
12/5/2012 | 1:12:18 AM
re: Wavelength Division Multiplexing (WDM)
You'll want to look into a device called an optical circulator.

From one website's description, an "optical circulator is a multi-port passive device, which routes one incoming optical signal from port 1 to port 2 and another signal from port 2 to port 3."

Port 2 is the rx/tx multiplex port; port 1 is tx, port 3 is rx.

Is this what you intended?
lightmaniac
50%
50%
lightmaniac,
User Rank: Light Beer
12/4/2012 | 11:04:20 PM
re: Wavelength Division Multiplexing (WDM)
L=C/F is a hyperbola function, so by any means there is no such linear relationship between delta L and delta F. If we apply differential of F on both sides, we can get dL/dF = -c/F^2 = -L^2/c.

This means the channel spacing is around 0.78nm at wavelength of 1530nm, and 0.81nm at wavelength of 1560nm.
dwdm2
50%
50%
dwdm2,
User Rank: Light Beer
12/4/2012 | 10:54:00 PM
re: Wavelength Division Multiplexing (WDM)
Apparently this thread died before I spotted. However, it raised my curiosity enough to jump in even this late.

I tried to do the calculation in the following way. The basic formula that relates the frequency, f, wavelength, l, speed of light, c, and refractive index of propagating medium, n, is

nfl = c ....... (1)

Where, c = 299792.458 THz.nm.

Also, ITU grid frequeny is given by,

f_N = 190.000 + 0.1*N (THz), N = 0, 1, 2, ...
(2)
where, N is a given ITU channel number.

For N=0, the wavelength from Eq. (1) can be found to be,

l = c/f = 1577.855 nm (ITU # 0)... (3)

Eq. (3) produces correct value of wavelengths corresponding to each ITU frequency. For 100 MHz (0.8nm) channel spacing, one then expects to be able to write Eq. (2) in terms of ITU wavelength as

l_N = 1577.855 + 0.8N, N = 0, 1, 2, ....
(4)

However, that is not the case! If you compute the wavelengths using Eq. (4), they do not correspond to the ITU grid wavelenths! In fact if you compute delta-l from the values obtained from Eq. (3), youGÇÖll find that at ITU #1, delta-l = 0.83 and it is only ~ 0.77 at the other edge of C-band. This matches with lightmanicGÇÖs analysis.

Regards,

AR
dwdm2
50%
50%
dwdm2,
User Rank: Light Beer
12/4/2012 | 10:52:54 PM
re: Wavelength Division Multiplexing (WDM)
In fact if one plots the delta-l vs. ITU channel#, it can be expressed as

delta-l = 0.83 - 0.0008*N (nm), N is an ITU channel#.

This shows that, delta-l = 0.8 nm only at ITU# 36.

However, most 100GHz systems have a passband of only +/- 0.1 nm (i.e., 25 GHz). So even 0.75 nm channel spacing is not bad, there is plenty of room.

Can anyone comment on 50 GHz or 25 GHz systems. Is there an ITU definition for these spacing?

Thanks.
debasish71
50%
50%
debasish71,
User Rank: Light Beer
12/4/2012 | 10:49:39 PM
re: Wavelength Division Multiplexing (WDM)
What is the maximum electrical speed that can be transported over the fibre without resorting to WDM?Suppose the signal to be transported over the fibre exceeds that value; how can it be a candidate for WDM? because, it still is a single electical signal, it is not a bunch of signals having varying speeds.. so that each signal can be converted to the optical context by parellel lasers and can be input to a DWM box which can mux them?If DWM is normally the mux of 32 signals, what is this value for DWDM?
Thanks,
dwdm2
50%
50%
dwdm2,
User Rank: Light Beer
12/4/2012 | 10:48:50 PM
re: Wavelength Division Multiplexing (WDM)
debasish71:

What is the maximum electrical speed that can be transported over the fibre without resorting to WDM?
-------

Well, debasish71, fiber does not transport electrical signal. Perhaps someone can/would try to explain if you try to rephrase/ask a question.
Page 1 / 15   >   >>
From The Founder
The independent evaluation of Nokia's key virtual network functions (VNFs) was a defining moment for the Finnish giant.
Flash Poll
Live Streaming Video
Charting the CSP's Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it's going from two industry veterans.
LRTV Custom TV
Energy 2020: Growing Services, Not Consumption

6|24|16   |   07:18   |   (0) comments


Management of power requirements needs to be a key consideration as cable operators deploy new services, says Dan Cooper, vice president of critical infrastructure for Charter Communications and chair of the SCTE/ISBE Standards Program's Energy Management Subcommittee. In this video, Cooper discusses the importance of cable operators and technology partners ...
LRTV Huawei Video Resource Center
Huawei & TDC First to Launch DOCSIS 3.1 Trial in Europe

6|24|16   |     |   (0) comments


To meet the rising demands for high-speed broadband and to tackle fierce competition for 1.5 million household, TDC wanted to upgrade its network to use the latest technology. Using Huawei's DOCSIS 3.1 solution, TDC is now able to offer gigabit speeds to its customers.
LRTV Documentaries
OPNFV Summit: Key Takeaways

6|22|16   |   03:28   |   (0) comments


MANO shortfalls, an increasingly bloated open source ecosystem and the cultural challenges for network operators were among the key takeaways from the OPNFV Summit in Berlin.
LRTV Huawei Video Resource Center
Bringing Ultra Broadband to the South Pacific

6|22|16   |   7:55   |   (0) comments


At Singapore's UBBS 2016 summit, Light Reading speaks to Lim Chee Siong, Huawei's CMO in the South Pacific Region.
LRTV Custom TV
Juniper's NFV Platform

6|22|16   |     |   (0) comments


A telco cloud is a key enabler for service providers to deliver virtualized services to their customers. Juniper has a differentiated approach with an open and comprehensive NFV platform to build the cloud of the future for multiple use cases.
Women in Comms Introduction Videos
Infinera: The Glass Ceiling's Been Broken

6|22|16   |   4:34   |   (0) comments


Shannon Williams, an engineer by trade and now the director of sales for Infinera's major accounts, draws confidence from being a female in a male-dominated industry and hopes other women will too as industry dynamics swing in our favor.
LRTV Custom TV
RAD Demonstrates SD-WAN Functionality at BCE 2016

6|22|16   |     |   (0) comments


In conjunction with Versa Networks, RAD demos a joint solution for SD-WAN implementation. The solution uses RAD's ETX-2i, a vCPE platform integrating a powerful IP and Carrier Ethernet NID/NTU with a field-pluggable x86 NFV module that runs Versa's FlexVNF for SD-WAN functionality. The demo implements SD-WAN over a simulated service provider footprint by deploying ...
LRTV Custom TV
Radware on Virtualizing Network Security

6|21|16   |     |   (0) comments


Radware's Michael O'Malley highlights the benefits for service providers of virtualizing network security.
LRTV Huawei Video Resource Center
Huawei 2016 UBBS World Tour: Singapore

6|21|16   |   02:39   |   (0) comments


Highlights from Huawei's UBBS World Tour event in Singapore.
LRTV Custom TV
The FlowBROKER Solution

6|21|16   |     |   (0) comments


During a demo at the Big Communications Event 2016, Accedian director of product line solutions Greg Spear demonstrates how the FlowBROKER distributed packet capture solution (part of Accedian's SkyLIGHT platform) can be used to troubleshoot and resolve QoE issues.

FlowBROKER is the industry's first lossless remote packet capture solution, which uses ...

LRTV Documentaries
BCE 2016: Dell & the New World Order

6|21|16   |   22:48   |   (0) comments


Dell's Jim Ganthier on how the very essence of enterprise is being affected by digital disruption – and how the cloud can help companies find a path forward.
LRTV Documentaries
BCE 2016: The CSP of the Future

6|20|16   |     |   (0) comments


Traditional telecom operators have been adopting new ways of doing business from the IT sector and emulating web-scale companies in their technology adoption. Are these strategies succeeding? A panel of experts at BCE considered the evidence...
Upcoming Live Events
September 13-14, 2016, The Curtis Hotel, Denver, CO
November 3, 2016, The Montcalm Marble Arch, London
November 30, 2016, The Westin Times Square, New York City
December 6-8, 2016,
May 16-17, 2017, Austin Convention Center, Austin, TX
All Upcoming Live Events
Infographics
A new survey conducted by Heavy Reading and TM Forum shows that CSPs around the world see the move to digital operations as a necessary part of their overall virtualization strategies.
Hot Topics
FCC to Vote on 5G Spectrum on July 14
Dan Jones, Mobile Editor, 6/20/2016
'Brexit' Vote Hits BT, Vodafone
Iain Morris, News Editor, 6/24/2016
Twitter Buys Magic Pony... Not That Kind
Mari Silbey, Senior Editor, Cable/Video, 6/20/2016
AT&T Settles on LTE for Cellular IoT
Dan Jones, Mobile Editor, 6/22/2016
Google Fiber Buys Webpass in Wireless Play
Iain Morris, News Editor, 6/23/2016
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
At the BCE 2016 show in Austin, ECI Telecom CEO Darryl Edwards tells Light Reading founder and CEO about the Elastic Network concept and the company's NFV and cybersecurity developments.
Mark Dzuban, president and CEO of SCTE/ISBE, sits down with Steve Saunders in Light Reading's New York office to discuss the society's Energy 2020 campaign, including its mission to benefit the environment, enable economic benefits and the key challenges facing cable operators wanting to reduce energy consumption.
Animals with Phones
Live Digital Audio

Our world has evolved through innovation from the Industrial Revolution of the 1740s to the information age, and it is now entering the Fourth Industrial Revolution, driven by technology. Technology is driving a paradigm shift in the way digital solutions deliver a connected world, changing the way we live, communicate and provide solutions. It can have a powerful impact on how we tackle some of the world’s most pressing problems. In this radio show, Caroline Dowling, President of Communications Infrastructure & Enterprise Computing at Flex, will join Women in Comms Director Sarah Thomas to discuss the impact technology has on society and how it can be a game-changer across the globe; improving lives and creating a smarter world. Dowling, a Cork, Ireland, native and graduate of Harvard Business School's Advanced Management Program, will also discuss her experience managing an international team focused on innovation in an age of high-speed change.