Light Reading

Wavelength Division Multiplexing (WDM)

Light Reading
Beginners' Guides
Light Reading
8/2/2001
50%
50%

Before reading this you may find the following tutorials useful:
Optical Networks, Optical Fiber

As an optical network consists of optical fibers carrying flashes of light from a laser, you can improve the speed of information transfer by increasing the number of laser light flashes per second (increasing the bit-rate). However, a point comes at which the technology of lasers cannot meet the demands of an optical network. Just as with the lone, dirty old man that flashes at passersby in the park — he can only flash so fast. But what if this man were to invite a group of his dirty old friends? Now they could all flash at the same time and vastly increase the amount of information they are transmitting to the innocent people walking by.

In an optical network, you can increase the number of lasers and have them all sending their light down the optical fiber at the same time. However, there is a catch. If the dirty old man and his friends were all wearing the same color of trench coat, then people would not be able to distinguish the different sources of information. So each flasher would need to have his own color of trench coat, to make sure that his information is not confused with that of the others. Similarly, all the different lasers must give out different colors (different wavelengths) of light so that their information can be separated at the other end of the network. The sending of many different wavelengths down the same optical fiber is known as Wavelength Division Multiplexing (WDM).

Modern networks in which individual lasers can transmit at 10 Gigabits per second can now have several different lasers each giving out 10 Gbit/s through the same fiber at the same time. The number of wavelengths is usually a power of 2 for some reason. So WDM systems will use two different wavelengths, or 4, 16, 32, 64, 128, etc. Systems being deployed at present will usually have no more than maybe 32 wavelengths, but technology advancements will continue to make a higher number of wavelengths possible.

Wavelength Division Multiplexing

The act of combining several different wavelengths on the same fiber is known as multiplexing. At the receiving end, these wavelengths need to be separated again, which is known, logically enough, as demultiplexing. Each wavelength will then need its own light detector to convert it back into useful information.

A WDM System

The exact wavelengths of light being used are usually around the 1550 nanometer region, the wavelength region in which optical fiber performs the best (it has very “low loss” or “low attenuation” at this wavelength). Each different wavelength will be separated by a multiple of 0.8nm (sometimes referred to as “100GHz spacing,” which is the frequency separation; or as the “ITU-Grid,” named after the standards body that set the figure). So if you have four wavelengths you may have them at 1549.2nm, 1550nm, 1550.8nm, and 1551.6nm. However, you could also separate each by 1.6nm, or even 2.4nm, as long as it is some multiple of 0.8nm. Newer designs that aim to cram even more wavelengths into an even tighter space, may even have half the regular spacing (0.4nm) or a quarter (0.2nm). There can be problems with wavelengths spreading out (known as dispersion) and affecting neighboring wavelengths; so this and other more complicated issues need to be considered carefully when designing a WDM system.

Key Points

  • Increases capacity of optical fibers
  • Different wavelength lasers each transmitting at same time down same fiber
  • 'Multiplexing' is combining wavelengths; 'demultiplexing' is splitting wavelengths
  • Usually in powers of 2 — 2, 4, 8, 16, 32, 64, 128, etc. wavelengths
  • Wavelengths separated by multiples of 0.8nm (100GHz, ITU-Grid)


Further Reading

Laser Basics, Tunable Lasers, Nonlinear Effects, Optical Amplification
(149)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
Page 1 / 15   >   >>
rubyliu
50%
50%
rubyliu,
User Rank: Light Beer
5/29/2014 | 4:05:26 AM
re: Wavelength Division Multiplexing (WDM)
In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (colours) of laser light. This technique enables bidirectional communications over one strand of fiber, as well as multiplication of capacity.@fiberstore.com
zataki
50%
50%
zataki,
User Rank: Light Beer
12/5/2012 | 3:27:28 AM
re: Wavelength Division Multiplexing (WDM)
Another option for this is to have a WDM coupler such as a 1310/1550 coupler. with this device it does not matter what direction the traffic is travelling in. The TX and RX can easily co-exist on the same fiber.
tony33
50%
50%
tony33,
User Rank: Light Beer
12/5/2012 | 1:19:32 AM
re: Wavelength Division Multiplexing (WDM)
test
alvind
50%
50%
alvind,
User Rank: Light Beer
12/5/2012 | 1:12:31 AM
re: Wavelength Division Multiplexing (WDM)
If I send different wavelength lasers from either ends on the same fibre simultaneousely, will it be possible to recover them on the other sides using refraction or something ?
PO
50%
50%
PO,
User Rank: Light Beer
12/5/2012 | 1:12:18 AM
re: Wavelength Division Multiplexing (WDM)
You'll want to look into a device called an optical circulator.

From one website's description, an "optical circulator is a multi-port passive device, which routes one incoming optical signal from port 1 to port 2 and another signal from port 2 to port 3."

Port 2 is the rx/tx multiplex port; port 1 is tx, port 3 is rx.

Is this what you intended?
lightmaniac
50%
50%
lightmaniac,
User Rank: Light Beer
12/4/2012 | 11:04:20 PM
re: Wavelength Division Multiplexing (WDM)
L=C/F is a hyperbola function, so by any means there is no such linear relationship between delta L and delta F. If we apply differential of F on both sides, we can get dL/dF = -c/F^2 = -L^2/c.

This means the channel spacing is around 0.78nm at wavelength of 1530nm, and 0.81nm at wavelength of 1560nm.
dwdm2
50%
50%
dwdm2,
User Rank: Light Beer
12/4/2012 | 10:54:00 PM
re: Wavelength Division Multiplexing (WDM)
Apparently this thread died before I spotted. However, it raised my curiosity enough to jump in even this late.

I tried to do the calculation in the following way. The basic formula that relates the frequency, f, wavelength, l, speed of light, c, and refractive index of propagating medium, n, is

nfl = c ....... (1)

Where, c = 299792.458 THz.nm.

Also, ITU grid frequeny is given by,

f_N = 190.000 + 0.1*N (THz), N = 0, 1, 2, ...
(2)
where, N is a given ITU channel number.

For N=0, the wavelength from Eq. (1) can be found to be,

l = c/f = 1577.855 nm (ITU # 0)... (3)

Eq. (3) produces correct value of wavelengths corresponding to each ITU frequency. For 100 MHz (0.8nm) channel spacing, one then expects to be able to write Eq. (2) in terms of ITU wavelength as

l_N = 1577.855 + 0.8N, N = 0, 1, 2, ....
(4)

However, that is not the case! If you compute the wavelengths using Eq. (4), they do not correspond to the ITU grid wavelenths! In fact if you compute delta-l from the values obtained from Eq. (3), youGÇÖll find that at ITU #1, delta-l = 0.83 and it is only ~ 0.77 at the other edge of C-band. This matches with lightmanicGÇÖs analysis.

Regards,

AR
dwdm2
50%
50%
dwdm2,
User Rank: Light Beer
12/4/2012 | 10:52:54 PM
re: Wavelength Division Multiplexing (WDM)
In fact if one plots the delta-l vs. ITU channel#, it can be expressed as

delta-l = 0.83 - 0.0008*N (nm), N is an ITU channel#.

This shows that, delta-l = 0.8 nm only at ITU# 36.

However, most 100GHz systems have a passband of only +/- 0.1 nm (i.e., 25 GHz). So even 0.75 nm channel spacing is not bad, there is plenty of room.

Can anyone comment on 50 GHz or 25 GHz systems. Is there an ITU definition for these spacing?

Thanks.
debasish71
50%
50%
debasish71,
User Rank: Light Beer
12/4/2012 | 10:49:39 PM
re: Wavelength Division Multiplexing (WDM)
What is the maximum electrical speed that can be transported over the fibre without resorting to WDM?Suppose the signal to be transported over the fibre exceeds that value; how can it be a candidate for WDM? because, it still is a single electical signal, it is not a bunch of signals having varying speeds.. so that each signal can be converted to the optical context by parellel lasers and can be input to a DWM box which can mux them?If DWM is normally the mux of 32 signals, what is this value for DWDM?
Thanks,
dwdm2
50%
50%
dwdm2,
User Rank: Light Beer
12/4/2012 | 10:48:50 PM
re: Wavelength Division Multiplexing (WDM)
debasish71:

What is the maximum electrical speed that can be transported over the fibre without resorting to WDM?
-------

Well, debasish71, fiber does not transport electrical signal. Perhaps someone can/would try to explain if you try to rephrase/ask a question.
Page 1 / 15   >   >>
From The Founder
Against the odds, Huawei is growing its telecoms networking equipment business in the US -- that should be ringing some alarm bells for domestic vendors.
Flash Poll
Live Streaming Video
CLOUD / MANAGED SERVICES: Prepping Ethernet for the Cloud
Moderator: Ray LeMaistre Panelists: Jeremy Bye, Leonard Sheahan
Between the CEOs
Metaswitch's New CEO Martin Lund Discusses His Role

9|2|15   |   11:27   |   (2) comments


Technology industry veteran Martin Lund joins Metaswitch Networks this week as the company's new CEO. In this interview, Lund discusses his new role and the industry's progress with Light Reading CEO Steve Saunders. Lund believes that the industry disruption caused by SDN and NFV is creating opportunities for companies like Metaswitch – network software providers ...
Telecom Innovators Video Showcase
Nominum on Leveraging the Power of DNS to Deliver Superior Subscriber Experiences

9|2|15   |   07:13   |   (0) comments


Nominum CEO Gary Messiana talks about the challenges service providers face in competing for a much more sophisticated customer, a customer that has heightened expectations for more personalized and compelling digital experiences. Providers are focusing their efforts on delivering higher value subscriber services, retaining their existing customers and increasing ...
Between the CEOs
CEO Chat With Jeff Miller, ActiveVideo

8|28|15   |   19:05   |   (0) comments


Jeff Miller, President and CEO of ActiveVideo, talks to Light Reading founder and CEO Steve Saunders about the impact of virtualization on the TV and video distribution market.
LRTV Huawei Video Resource Center
Vodafone: Mobile Money Is About Customer Trust

8|27|15   |   06.36   |   (0) comments


Light Reading spoke with Vodafone's Ian Ravenscroft about the unique responsibilities and opportunities facing operators handling customers' financial transactions over the network.
Telecom Innovators Video Showcase
Palo Alto Networks on Expanding in the Carrier/Service Provider Market

8|26|15   |   07:54   |   (0) comments


Alfred Lee from Palo Alto Networks tells Steve Saunders about their new chassis-based system, the PA-7080, and how it can benefit service providers compared to legacy firewalls.
LRTV Custom TV
Global Services Forum Preview

8|25|15   |   02:36   |   (0) comments


Light Reading's CEO and Founder Steve Saunders talks about Huawei's upcoming Global Services Forum with the help of Heavy Reading's Patrick Donegan and Teresa Mastrangelo.
Telecom Innovators Video Showcase
Infoblox on DNS Threat Index

8|19|15   |   04:39   |   (0) comments


Dilip Pillaipakam from Infoblox talks to Steve Saunders about his company's core network services.
Between the CEOs
CEO Chat With Ihab Tarazi, Equinix

8|14|15   |   20:18   |   (1) comment


Equinix CTO Ihab Tarazi talks to Light Reading founder and CEO Steve Saunders about the dramatic changes in the data center, cloud and interconnect markets and discusses the impact of SDN and NFV in the coming years.
Telecom Innovators Video Showcase
The Netformx Ecosystem

8|14|15   |   09:39   |   (1) comment


Ittai Bareket, CEO of Netformx, talks with Steve Saunders about the Netformx Ecosystem, which employs cutting-edge prescriptive analytics to help solution providers maximize profits.
Telecom Innovators Video Showcase
Versa Networks on Leveraging VNFs

8|12|15   |   07:37   |   (0) comments


Kumar Mehta, founder and CEO of stealth mode startup Versa Networks, talks with Steve Saunders about how providers can best leverage virtualized network functions (VNFs).
LRTV Custom TV
Transforming the Network Through OPNFV

8|5|15   |   7:09   |   (0) comments


Sandra Rivera, VP Data Center Group; GM Network Platforms Group, Intel Corporation, on OPNFV Arno and how the industry is coming together to accelerate the deployment of NFV and transform the network.
LRTV Huawei Video Resource Center
Huawei ONS Product Demo

8|3|15   |   6:01   |   (0) comments


Huawei shows at Open Networking Summit 2015 in Santa Clara how its SDN and NFV solutions embrace openness.
Upcoming Live Events
September 16-17, 2015, The Westin Galleria Dallas, Dallas, TX
September 16, 2015, The Westin Galleria Dallas, Dallas, TX
September 16, 2015, The Westin Galleria Dallas, Dallas, TX
September 29-30, 2015, The Westin Grand Müchen, Munich, Germany
October 14-15, 2015, New Orleans Ernest N. Morial Convention Center, New Orleans, LA
November 5, 2015, Hilton Santa Clara, Santa Clara, CA
November 17, 2015, Santa Clara, California
December 1, 2015, The Westin Times Square, New York City
December 2, 2015, The Westin Times Square, New York City
All Upcoming Live Events
Infographics
Cisco's cloud and virtualization portfolio can increase business agility and innovation by building a more flexible network architecture.
Hot Topics
T-Mobile CEO Plays Data Traffic Cop
Sarah Thomas, Editorial Operations Director, 8/31/2015
CEO Chat With Bill Gates
Steve Saunders, CEO and founder, Light Reading, 8/31/2015
Time to Monetize Cable WiFi
Alan Breznick, Cable/Video Practice Leader, 8/31/2015
New Apple TV: More $$, Not Content – Report
Mari Silbey, Senior Editor, Cable/Video, 8/31/2015
Ex-AlcaLu Boss Tasked With Bolstering Altice
Iain Morris, News Editor, 9/1/2015
Like Us on Facebook
Twitter Feed
September 16, 2015
Wi-Fi First or Second?
September 22, 2015
Media Begins With “Me”
Webinar Archive
BETWEEN THE CEOs - Executive Interviews
Technology industry veteran Martin Lund joins Metaswitch Networks this week as the company's new CEO. In this interview, Lund discusses his new role and the industry's progress with Light Reading CEO Steve Saunders. Lund believes that the industry disruption caused by SDN and NFV is creating opportunities for companies like Metaswitch – network software providers with the agility to embrace new technologies quickly and the ability to deliver on substantial projects for global network operators.
The scene: Last Saturday, lunchtime, the interior of a shi-shi-foo-foo eatery in Manhattan's SoHo district.
Cats with Phones
It's a New Age... Click Here
When smartphones replace stuffed animals.