& cplSiteName &

Testing Cisco's Media-Centric Data Center

Light Reading
6/11/2009
100%
0%

  • Key finding: Using the Virtual Port Channel and Virtual Device Context features, Cisco reduces failure times in the data center to less than a second.

    Now that we had tested different components and features of the data center, it was time to test Cisco’s data center in the context of a full IP video "medianet." This meant using the traffic profile of both business and residential applications to test the IP Video Service Delivery Network. We sent emulated Digital Signage, TelePresence, and Video Surveillance traffic into the network through the Nexus 5000. IP video, Internet, and VoIP traffic were attached to the network via the Cisco Nexus 7000 as depicted in the image below. To round out the service offering, VoD and pay-per-view traffic was also transported in the network, but these services entered the network via the ASR 9010 and did not traverse the data center.

    Test Setup: IP Video Data Center Services & Topology Cisco designed its IP video-centric data center to address the key concern service providers have – avoiding a single point of failure. In the Service Delivery Network topology, there are customers from a wide range of distant locations accessing a single data center. It is very important to install and configure the proper redundancy mechanisms in the data center in order to avoid upsetting, not merely one of your customers, but all of them.

    One such redundancy mechanism often seen in data centers is the IEEE’s Link Aggregation Group (LAG, defined in IEEE 802.3ad). This mechanism allows the network administrator to bind several physical links together in a group. When links within the group fail, the other, still active links, will then carry the traffic, as long as there is enough capacity in the group. This solves the issue of potential links between two switches failing – however, what happens when a complete switch fails?

    Using the “traditional” LAG mechanism, we would experience complete loss of services. To solve this issue and therefore increase the level of resiliency in the data center, Cisco used a new feature available in the latest Nexus switches code release NX-OS 4.1(5) that is similar to LAG, but is configured among three devices.

    Cisco calls this feature Virtual Port Channel (VPC). VPC is a virtual port group, which can be distributed across multiple devices, allowing the full bandwidth capacity of multiple links to be used. In addition, the physical (hardware) and logical (OS) resources on the Nexus 7000 switches can be virtualized where any set of ports can become members of a Virtual Device Context (VDC, a virtual switch). These two complementary configurations were used to virtualize all business and residential traffic in the test. The figure below depicts the virtual port channels configured in the test:

    Virtual Port Channel Configuration We tested that the system could effectively provide resilient connectivity to the data center by sending the same traffic we used in our service delivery network tests. Our goal was to verify that if a link between two Nexus devices failed, the traffic being carried over the failed link would still flow using a different path.

    Three emulated business applications were attached to the network on the Nexus 5000 switch using four 10-Gigabit Ethernet interfaces. Cisco configured each incoming 10-Gigabit Ethernet port on the Nexus 5000 to accept traffic for a single business service. The Nexus 5000 was then configured to split all traffic for each service evenly to each downstream Nexus 7000.

    In essence, a VPC with a link to each Nexus 7000 was configured for each data center business service, with the exception of telepresence, which used two VPCs for this test. This configuration would be reasonable for an operator that knows its data center traffic utilization very well. Since trending and capacity planning are best-practice in service provider networks and data centers, we accepted the configuration. Cisco explained that if a single link in the VPC failed, the other link would then transport the full load for that service, rerouting to the proper Nexus 7000 device via the links between the two Nexus 7000 devices. The diagram above displays this forwarding behavior.

    Our initial plan was to fail all links on one side of the data center and verify that the other side could maintain the service and perform the switchover. We were informed by the Cisco engineering team that recovery from such multiple failure was not possible, and so we were left with the usual failure scenario – a single link.

    We tested the virtual port channel’s ability to recover from a group member's single-link failure by using the full service delivery network traffic profile and disconnecting a single downstream link from the Nexus 5000. After understanding the way Cisco configured the data center, we expected only one service to be affected. Cisco’s claim was that the service would recover from the broken link in less than one second. The figure below shows the link that was disconnected for the test simulating the link failover in the data center.

    Test Setup: Data Center Convergence EANTC’s standard failover test procedure calls for repetition of the tests three times in order to collect a minimum statistical significance in the results. In this particular case, due to inconsistency of the results in one test run, we decided to perform an additional two test runs, bringing us to five test runs in total (or actually five failover test runs and five recovery test runs).

    The link we abused was serving exactly four business ports attached to the uPE1. We expected that when we failed the link the business ports attached to the second uPE would not show any negative effect, and indeed the results showed almost that. A few frames were still lost on ports that we did not expect, which Cisco explained was an effect of the hashing process used. The graph below shows the highest out-of-service time recorded on a single port amongst the four ports where we expected to lose traffic. In fact, the loss observed across these four ports was consistent as to be expected, never differing by more than 20 lost frames. The news was positive regardless. All test runs on all ports showed that the recovery times never exceeded the one second claimed by Cisco.

    In the world of backbone routing, the results we show above are perhaps disheartening. As an update to the available data center resiliency mechanisms, such as various Spanning Tree Protocols and Link Aggregation Groups, Cisco claims that the results shown here are an improvement. From our testing experience, Spanning Tree Protocols could indeed require seconds to converge, which acknowledges Cisco claims and is clearly another valid and unique data center resiliency mechanism for service providers.

    Next Page: Results: In-Service Software Upgrade (ISSU)

     
    (2)  | 
    Comment  | 
    Print  | 
  • Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
    lron58
    50%
    50%
    lron58,
    User Rank: Light Beer
    12/5/2012 | 4:00:46 PM
    re: Testing Cisco's Media-Centric Data Center


    A statement was made,  "We accepted that for the major upgrade we would run all traffic except telepresence, digital signage, and IP video surveillance, leaving IP video, VoIP, and Internet traffic traversing one Nexus 7000, and VoIP and Internet traffic traversing the other Nexus 7000?."


     


    Why was this "accepted"?



    Ron


     

    cross
    50%
    50%
    cross,
    User Rank: Light Beer
    12/5/2012 | 4:00:23 PM
    re: Testing Cisco's Media-Centric Data Center


    Hi Iron58,


    We accepted turning off the traffic profiles representing telepresence, digital signage, and IP video surveillance as part of the major upgrade test procedure due to the lack of Virtual Port Channel support in the earlier code from which we were upgrading (this is disclosed in the article).  Since traffic was still traversing the Device Under Test (Nexus 7000) we could perform the test without those streams.


    Apologies for the late response. Too much travel...


    Thanks, Carsten/EANTC

    Featured Video
    From The Founder
    Light Reading is spending much of this year digging into the details of how automation technology will impact the comms market, but let's take a moment to also look at how automation is set to overturn the current world order by the middle of the century.
    Flash Poll
    Upcoming Live Events
    November 1, 2017, The Royal Garden Hotel
    November 1, 2017, The Montcalm Marble Arch
    November 2, 2017, 8 Northumberland Avenue, London, UK
    November 2, 2017, 8 Northumberland Avenue London
    November 10, 2017, The Westin Times Square, New York, NY
    November 16, 2017, ExCel Centre, London
    November 30, 2017, The Westin Times Square
    May 14-17, 2018, Austin Convention Center
    All Upcoming Live Events
    Infographics
    With the mobile ecosystem becoming increasingly vulnerable to security threats, AdaptiveMobile has laid out some of the key considerations for the wireless community.
    Hot Topics
    Muni Policies Stymie Edge Computing
    Carol Wilson, Editor-at-large, 10/17/2017
    Pai's FCC Raises Alarms at Competitive Carriers
    Carol Wilson, Editor-at-large, 10/16/2017
    Is US Lurching Back to Monopoly Status?
    Carol Wilson, Editor-at-large, 10/16/2017
    'Brutal' Automation & the Looming Workforce Cull
    Iain Morris, News Editor, 10/18/2017
    Worried About Bandwidth for 4K? Here Comes 8K!
    Aditya Kishore, Practice Leader, Video Transformation, Telco Transformation, 10/17/2017
    Animals with Phones
    Live Digital Audio

    Understanding the full experience of women in technology requires starting at the collegiate level (or sooner) and studying the technologies women are involved with, company cultures they're part of and personal experiences of individuals.

    During this WiC radio show, we will talk with Nicole Engelbert, the director of Research & Analysis for Ovum Technology and a 23-year telecom industry veteran, about her experiences and perspectives on women in tech. Engelbert covers infrastructure, applications and industries for Ovum, but she is also involved in the research firm's higher education team and has helped colleges and universities globally leverage technology as a strategy for improving recruitment, retention and graduation performance.

    She will share her unique insight into the collegiate level, where women pursuing engineering and STEM-related degrees is dwindling. Engelbert will also reveal new, original Ovum research on the topics of artificial intelligence, the Internet of Things, security and augmented reality, as well as discuss what each of those technologies might mean for women in our field. As always, we'll also leave plenty of time to answer all your questions live on the air and chat board.

    Like Us on Facebook
    Twitter Feed