& cplSiteName &

Intel Detects More Silicon Photonics

Craig Matsumoto
12/7/2008
50%
50%

It's been almost two years since Intel Corp. (Nasdaq: INTC) announced any "breakthroughs" in silicon photonics. Well, we can't let that stand, can we?

Fear not. Intel is publishing its latest results today in the journal Nature Photonics, describing an Avalanche Photodiode (APD) -- a type of detector for the receiving end of an optical link -- that's made of silicon (but not completely -- there's also a germanium layer).

Intel's silicon photonics efforts so far have focused on modulators and lasers. (See Intel at 40, Intel Pushes Silicon Modulator , Intel Fires Up Silicon Laser, Intel Claims Laser Breakthrough, Intel Gets Passive on Optics, and Intel's Modest Modulator .)

The APD is new ground, not just because it's a different part, but because its performance outdoes "any equivalent device in a III-V-based or exotic material," says Mario Paniccia, an Intel fellow and director of the company's Photonics Technology Lab. (III-V, or "three-five," refers to a class of compounds such as indium phosphide (InP) or gallium arsenide.)

That's a first. Silicon photonics have always been a tradeoff. The devices would be easier to integrate and cheaper to manufacture, since they can be built using complementary metal-oxide semiconductor (CMOS) techniques that are commonplace in the chip world -- but the performance suffers. Intel has been aiming for CMOS devices with 90 percent of the performance of InP ones.

The APDs aren't anywhere close to being a marketable product, by the way. "This is a research result. It's actually a very new result, Paniccia says.

Like any big company, Intel has started and ended its share of projects. (See Will Intel Trash Telecom?, Marvell Takes a Bit of Intel, Intel Dumps Dialogic, and Intel Hands Off to Cortina.) But silicon photonics has stuck, a testament to how vital Intel believes this technology is to the future of computing.

There have been changes, though. All the photonics work is now being done at Numonyx BV , a spinoff created early this year out of the Intel and STMicroelectronics NV (NYSE: STM) flash memory businesses.

Why? It so happens, Intel's silicon photonics work was being done at what is now Numonyx's fab. Intel found it easiest to just keep the operation in place, Paniccia says. So, the engineers technically work at Numonyx and build their devices on the same Numonyx production lines that are churning out high-volume memory chips.

Meanwhile, silicon photonics are reaching the commercial stage, mainly in the form of active optical cables for data centers. Kotura Inc. , Lightwire Inc. , and Luxtera Inc. are among the companies producing or pursuing commercial products. (See Silicon Photonics Advance PIC Possibilities, Luxtera Goes Commercial, and Lightwire Debuts Its Silicon Photonics.)

Going the distance
Intel's silicon photonics efforts are aimed mostly at short-reach connections, but the APD could easily be applied to a telecom network. The devices usually get mentioned in the context of long-haul spans, partly because they're too expensive to use elsewhere -- $200 to $300 apiece, Paniccia says.

The advantage of an APD is that a weaker light source can generate a sufficient current. That means you can take some liberties on the transmission side -- moving the source a farther distance away, for instance. Among the possible applications Paniccia cited was the fiber-to-the-home network, where APDs could conceivably be used to extend the reach of fiber links.

Performance for APDs can be measured in the gain-bandwidth product -- that is, the device's gain multiplied by the speed of the connection, which comes out to a fixed number measured in Hertz. (Note that this means the gain goes down as the bandwidth gets faster.)

For an indium phosphide APD, that gain-bandwidth product is around 120 GHz, Intel says. Intel's silicon APD is showing 340 GHz, implying that it would have better gain than InP devices.

Intel didn't specify the speed it's aiming for with APD, but the company is shooting high with its marketing, saying a silicon APD could be an aid in 40-Gbit/s networks. That would be quite a leap, as APDs are only available in speeds up to 2.5 Gbit/s today.

"A 40-Gbit/s APD might be really pushing it, but as something they're talking about for the future, it might be reasonable," says Ali Abouzari, vice president of sales for CyOptics Inc.

To describe which part of the APD is made of silicon, it's helpful to look at how an APD works. A normal photodiode receives a photon of light and produces an electron/hole pair (you can think of a "hole" as the opposite of an electron), creating electrical current. An APD adds a multiplication region where that reaction gets amplified, creating many more electron/hole pairs and a stronger current.

Intel used silicon for the multiplication region. But to absorb the photon and get the process started, Intel needed germanium, because silicon is transparent to the infrared wavelengths used in communications. Silicon can't "catch" the light.

Plenty of challenges exist with this approach. One is that the silicon and germanium atoms form lattices that don't quite match up, and that can cause some current to leak out even when there's no light present. Intel is still working on getting that "dark current" down, Paniccia says.

— Craig Matsumoto, West Coast Editor, Light Reading

(8)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
nodak
50%
50%
nodak,
User Rank: Light Beer
12/5/2012 | 3:25:43 PM
re: Intel Detects More Silicon Photonics
"That would be quite a leap, as APDs are only available in speeds up to 2.5 Gbit/s today. "

I think you might want to review this statement. Just a quick search turns up APDs being used in 10G receivers in 1996 experiments and in 2001 products (not an exhaustive search, probably things that could turn up earlier). Were you perhaps talking about the use of PIN diodes?
Pete Baldwin
50%
50%
Pete Baldwin,
User Rank: Light Beer
12/5/2012 | 3:25:43 PM
re: Intel Detects More Silicon Photonics
Luxtera already has silicon APDs that I think it's shown publicly. It's at least talked about them publicly, in papers at OFC/NFOEC, ECOC, and other shows.

It's the same concept Intel is using -- an absorption layer made of Ge and a multiplication layer of Si -- but Luxtera says its model is a waveguide-based photodetector.

Intel, by contrast, hasn't gotten its APD to work in waveguide form yet; on the conference call, the company says it's still working on such a thing.
litsem
50%
50%
litsem,
User Rank: Light Beer
12/5/2012 | 3:25:42 PM
re: Intel Detects More Silicon Photonics
I may be wrong but I believe Germanium APDs in Silicon have been done in lab and even commercialized by companies like Luxtera long before this article. I understand it's a first for Intel and maybe they are better in some ways, but I don't believe that it is an industry first.
Pete Baldwin
50%
50%
Pete Baldwin,
User Rank: Light Beer
12/5/2012 | 3:25:41 PM
re: Intel Detects More Silicon Photonics
litsem -- You're mostly right; Luxtera's got silicon APDs in the lab. They tell me they haven't commercialized them yet. (See the first comment in the thread.)

The "first" that Intel is touting is the performance that exceeds that of silicon.

Luxtera, though, says they get performance that's better than Intel's -- although that's by a different metric, in terms of sensitivity (1dB better than Intel, they claim.)

Not sure Luxtera's in any rush to commericalize the silicon APD. They're really focused on short reach connections right now, and the APD just isn't that useful to them there.
Pete Baldwin
50%
50%
Pete Baldwin,
User Rank: Light Beer
12/5/2012 | 3:25:41 PM
re: Intel Detects More Silicon Photonics
You may be right; it looks like Eudyna's got one. My mistake.

I was talking more about commercially, currently available devices, but yeah, there have been papers about 10G APDs and probably some startup work in the early '00s that's dead.
bw
50%
50%
bw,
User Rank: Light Beer
12/5/2012 | 3:25:40 PM
re: Intel Detects More Silicon Photonics
Craig: anybody in the industry should know that 10G APDs had been in commercial use since late 1990s supplied by Agere (now CyOpitcs), Fujitsu (Eudyna), JDSU, etc. Just check every 80km 10G 300pin transponders: each has a 10G APD.
Pete Baldwin
50%
50%
Pete Baldwin,
User Rank: Light Beer
12/5/2012 | 3:25:31 PM
re: Intel Detects More Silicon Photonics
bw - thanks for the info.

Folks I'd talked to couldn't point to any 10G APDs, so obviously I needed to check around more (or maybe I misunderstood something.)
^Eagle^
50%
50%
^Eagle^,
User Rank: Light Beer
12/5/2012 | 3:25:29 PM
re: Intel Detects More Silicon Photonics
Craig,

indeed, apd's at 10G have been around for quite sometime. Also there are APD's at 40G as well.

only thing new here is doing it in silicon (quasi silicon). What they don't tell you is that you actually cannot take advantage of a standard CMOS line and integrate silicon (active) photonics so easily as the Germanium they use to get the APD working is not used on standard CMOS line in this way. LOTS of additional tooling designs, fabrication design work and fundamentals need to be solved to make it work, and those special things are not currently used on CMOS lines. So, HUUUGE investment is still required to retool. Therefore, one wonders if indeed this will be a lower cost approach (silicon photonics.. CMOS but not really...) over traditional GaS and InP active photonics considering the EPI cost for most FABs currently in the world have been written off already due to the last 3 "downturns". Perhaps in the long term CMOS photonics will fly, but for now, the advantages are purely theoretical. Long way from changing the world. Look for lower cost InP approaches and hybrid approaches to dominate for quite awhile I think.

sailboat
From The Founder
Kicking off BCE 2017, Light Reading founder Steve Saunders lays blame for NFV's slow ramp-up and urges telecom to return to old-fashioned standards building and interoperability.
Flash Poll
Live Streaming Video
Charting the CSP's Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it's going from two industry veterans.
Women in Comms Introduction Videos
Cisco: Mentoring Critical to Attract & Retain Women

7|19|17   |   6:40   |   (1) comment


Liz Centoni, senior vice president and general manager of Cisco's Computing System Product Group, shares why mentoring in all its forms is important for women and what Cisco is doing that's made a difference for women in tech.
LRTV Custom TV
Gigabit LTE With Snapdragon 835

7|12|17   |     |   (1) comment


At an event in Wembley stadium, EE used its live network to demonstrate gigabit LTE using a Sony Xperia XZ Premium smartphone with a Qualcomm Snapdragon 835 chip.
LRTV Custom TV
Implementing Machine Intelligence With Guavus

7|12|17   |     |   (0) comments


Guavus unites big data and machine intelligence, enabling many of the the largest service providers in the world to save money and drive measureable revenue. Learn how applying Machine Intelligence substantially reduces operational costs and in many cases can eliminate subscriber impact, meaning a better subscriber experience and higher NPS.
LRTV Custom TV
Unlocking Customer Experience Insights With Machine Intelligence

7|12|17   |     |   (0) comments


When used to analyze operational data and to drive operational decisions, machine intelligence reduces the number of tasks which require human intervention. Guavus invested in Machine Intelligence early. Learn about the difference between Machine Learning and Machine Intelligence.
Women in Comms Introduction Videos
Verizon VP Talks Network, Career Planning

7|12|17   |   4:49   |   (0) comments


Heidi Hemmer, vice president of Technology, Strategy & Planning at Verizon, shares how bold bets and the future of tech define her career.
Telecom Innovators Video Showcase
Masergy's NFV Journey

7|11|17   |     |   (0) comments


Ray Watson, vice president of global technology at Masergy, discusses the advantages and challenges in entering the still-maturing NFV market for the past three years.
Telecom Innovators Video Showcase
Mavenir on RCS Cloud Platform & Multi-ID

7|10|17   |     |   (0) comments


Guillaume Le Mener, head of marketing and corporate development at Mavenir, discussed RCS and the recent launch of Multi-ID, which supports T-Mobile's DIGITS, the revolutionary new technology that breaks down the limitation of one number per phone and one phone per number.
LRTV Custom TV
ADTRAN Executive Outlines Trends in Next-Generation 10-Gigabit Cable Networks

7|10|17   |     |   (0) comments


Hossam Salib, VP of Cable and Wireless Strategy at ADTRAN, outlines key trends as MSOs begin to deploy next-generation Gigabit and 10-Gigabit cable networks. In the interview, Hossam outlines the advantages of a Fiber Deep architecture, FTTH options including EPON and RFoG, and the importance of SDN and NFV in building next-generation high-bandwidth cable networks.
LRTV Interviews
Global Capacity: Bandwidth Demand Driving Ethernet Growth

7|6|17   |   6:37   |   (0) comments


At Light Reading's Big Communications Event in Austin, Texas, Global Capacity's VP of Marketing Mary Stanhope talks about how the demand for bandwidth is changing the way service providers deliver broadband services.
LRTV Interviews
Colt's Services Chief on Digital Delivery

7|5|17   |   16:12   |   (0) comments


Rogier Bronsgeest, the chief customer experience officer (chief CEO!) at Colt, discusses the way in which the service provider interacts with its customers these days and his aggressive net promoter score (NPS) targets.
Women in Comms Introduction Videos
BT VP: Women Should Fill Security Talent Gap

7|5|17   |   6:00   |   (2) comments


By 2020 there will be six security jobs for every qualified worker, and Kate Kuehn, vice president of Security for BT in the Americas, says BT wants to encourage women to fill the shortage in jobs.
LRTV Interviews
Colt Sales Exec on Services Trends

7|4|17   |   12:59   |   (0) comments


Colt's sales director for enterprise, James Kershaw, sheds some light on the services currently in demand and how network upgrades are influencing customer demand.
Upcoming Live Events
September 28, 2017, Denver, CO
October 18, 2017, Colorado Convention Center - Denver, CO
November 1, 2017, The Royal Garden Hotel
November 1, 2017, The Montcalm Marble Arch
November 2, 2017, 8 Northumberland Avenue, London, UK
November 30, 2017, The Westin Times Square
All Upcoming Live Events
Infographics
With the mobile ecosystem becoming increasingly vulnerable to security threats, AdaptiveMobile has laid out some of the key considerations for the wireless community.
Hot Topics
Mobile to Power Online Video Consumption – Zenith
Aditya Kishore, Practice Leader, Video Transformation, Telco Transformation, 7/19/2017
Can Mushroom Sprout in Crowded SD-WAN Field?
Carol Wilson, Editor-at-large, 7/18/2017
AI Will Be Ubiquitous in 2020 but Overhyped in 2017 – Gartner
Sarah Thomas, Director, Women in Comms, 7/18/2017
Facing the Facebook Video Threat
Gary Miles, Chief Marketing Officer, Amdocs, 7/17/2017
Brocade, Broadcom Merger in Doubt
Iain Morris, News Editor, 7/19/2017
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
Following a recent board meeting, the New IP Agency (NIA) has a new strategy to help accelerate the adoption of NFV capabilities, explains the Agency's Founder and Secretary, Steve Saunders.
One of the nice bits of my job (other than the teeny tiny salary, obviously) is that I get to pick and choose who I interview for this slot on the Light Reading home ...
Animals with Phones
Fuzzy Quick Fix Click Here
If you can't access it, is it really broken?
Live Digital Audio

Playing it safe can only get you so far. Sometimes the biggest bets have the biggest payouts, and that is true in your career as well. For this radio show, Caroline Chan, general manager of the 5G Infrastructure Division of the Network Platform Group at Intel, will share her own personal story of how she successfully took big bets to build a successful career, as well as offer advice on how you can do the same. We’ll cover everything from how to overcome fear and manage risk, how to be prepared for where technology is going in the future and how to structure your career in a way to ensure you keep progressing. Chan, a seasoned telecom veteran and effective risk taker herself, will also leave plenty of time to answer all your questions live on the air.