& cplSiteName &

NTT, NEC, Fujitsu Test 400G Over 10,000km

Light Reading
News Wire Feed
Light Reading
9/5/2014
50%
50%

TOKYO -- NTT Corporation, NEC Corporation, and Fujitsu Limited today announced that they have achieved a successful transmission test of the world’s top-level, 400Gbps/channel-class digital coherent optical transmissions technology, marking a step toward commercialization.

The test, with 400Gbps-class signals multiplexed up to 62 channels, verified fiber-optic transmissions of 12.4-24.8Tbps wavelength division multiplexed signals having different capacities for each modulation method at distances ranging from several thousand kilometers up to 10,000km.

By implementing this technology in an optical transceiver, a quadrupling of optical transmissions was achieved while using existing optical fiber, enabling the construction of the world’s top-level core network, with the ability to handle transmissions of ultra-high-definition videos and the widespread expansion of machine-to-machine (M2M) communications.

Building on these results, the companies will accelerate efforts to commercialize 400Gbps-class optical transmission technology. This R&D initiative was commissioned and is sponsored by Japan’s Ministry of Internal Affairs and Communications (MIC) as part of its “Research and Development Project for the Ultra-high Speed and Green Photonic Networks” program.

Background
To accommodate the explosive growth in data communications traffic stemming from the widespread use of smartphones and fiber to the home, progress is now being made in the market to increase 100Gbps-class optical transmission systems that use digital coherent technology.

NTT, NEC, and Fujitsu have pursued R&D on 100Gbps-class digital coherent optical communication technology as part of the MIC’s “Research and Development on High Speed Optical Transport System Technologies” program (fiscal 2009) and “Research and Development on Ultra-high Speed Optical Edge Node Technologies” program (fiscal 2010-2011). The achievements of these development initiatives are currently being deployed by each company as part of a global roll-out to optical networks throughout the world. In addition, the coherent DSP that was employed in these programs currently holds the world’s top market share.

However, the arrival of a truly big data-based society and surging M2M communications has not just led to increased data volume, but further data diversification, and has necessitated next-generation, optical core networks that are able to transmit ultra-high-speed, high-capacity data both flexibly and economically.

Accordingly, NTT, NEC, and Fujitsu in fiscal 2012 undertook the “Research and Development Project for the Ultra-high Speed and Green Photonic Networks,” a research program sponsored by MIC, and have been moving forward on joint R&D that brings the world’s top level 400Gbps/channel class digital coherent optical transmissions technology to commercialization.

Results
The key technologies that enabled ultra-high speed optical transmission of 400Gbps-class/channel are as follows.

1.Extremely flexible 400Gbps-class adaptive modulation/demodulation technology
In addition to Quadrature Phase Shift Keying (QPSK), which is used in existing 100Gbps transmissions and which superimposes information on the phase of the light, an 8 Quadrature Amplitude Modulation (QAM) and a 16 QAM were used, superimposing information on both the phase and amplitude of the optical waves to expand data volume, and combined with sub-carrier multiplexing enabled by spectral compression technology called Nyquist filtering. By use of these technologies, an ultra-high speed optical transmission of the world’s top-level 400Gbps-class was achieved, allowing for a much higher volume of information to be transmitted compared to that of conventional methods.

In particular, in response to the characteristics of the optical transmission links, by selecting a modulation format appropriate for the quality of the link, in regards to the adaptive modulation/demodulation technology that enables the application of efficient optical network resources, the companies developed the world’s first algorithm that can be implemented in an electronic circuit including an 8 QAM. Transmission ranges of 500 km to 1500km for capacities of 10 — 20Tbps per each core of optical fiber were successfully covered, which was not possible up until now, even with QPSK and 16 QAM. Therefore, the same hardware can support various modulation/demodulation formats in response to the conditions of the transmission line, such as transmission distance, enabling a highly adaptable and flexible network.

2.Compensation function using digital backward propagation signal processing, enabling long-distance transmissions
To achieve 400Gbps-class, ultra-high-speed optical transmissions over long distances, it is necessary to compensate for complex waveform distortions caused by nonlinear optical effects, which are generated with the optical fiber’s refractive index changes in accordance with the intensity of the optical signal as high-power optical signals enter the optical fiber. These distortions would otherwise limit the power of incoming optical signals into the optical fiber.

Up until now, however, compensating for the nonlinear optical effects of multi-level modulation signals within the optical fiber was difficult because the extremely large scale of the circuit made circuit implementation difficult. Therefore, it has been the primary limiting factor standing in the way of extending the distance of transmissions.

To overcome this problem, the companies developed digital backward propagation signal processing, which, through refinements to the algorithm and circuit designs that dramatically reduced the volume of calculations, enabled circuit implementation and compensation of the nonlinear optical effects. They also developed chromatic dispersion estimation technology enabling estimations, for 10,000km of optical fiber, of the values of chromatic dispersion, which is a phenomenon in which the propagation lag times differ for each wavelength in an optical fiber. Moreover, a high-performance MSSC-LDPC (*7) error-correction code was used to enable a further extension of transmission distances. As a result of these technologies, the amount of equipment needed for long-haul transmission can be reduced, leading to expectations that the network would also consume less electricity.

By combining these technologies, NTT, NEC, and Fujitsu successfully performed straight-line transmission tests for optically repeatered transmissions of up to 10,000km over a set-up emulating a submarine cable transmission link and optically repeatered transmissions of up to 3,000km over a set-up emulating a terrestrial transmission link. They also confirmed the viability of functions required for the practical implementation of algorithms enabling circuit implementation. These transmission tests were based on joint research with Japan’s National Institute of Information and Communications Technology (NICT), and were performed using NICT’s testing equipment.

Future Plans
Based on these results, the companies will move forward on development work to quickly put 400Gbps-class optical transmission technology into commercialization with the goal of creating the world’s top-level optical network that delivers flexibility along with ultra-high speeds and low power consumption. In addition, they will collaborate with institutions inside and outside Japan in an aim to deploy their achievements on a global scale.

NTT Group (NYSE: NTT)
Fujitsu Ltd. (Tokyo: 6702; London: FUJ; OTC: FJTSY)
NEC Corp. (Tokyo: 6701)

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
From The Founder
Either we perform a complete 'factory reset' on the way the telecom industry creates and deploys virtualization, or we face the consequences.
Flash Poll
Live Streaming Video
Charting the CSP's Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it's going from two industry veterans.
LRTV Custom TV
The Urgency of Commercial 5G Services

4|26|17   |     |   (0) comments


The progress of 5G has been closely monitored in the industry. At the 2017 Brooklyn 5G Summit, the sense of urgency for a commercial 5G launch had started to surface among operators.
Women in Comms Introduction Videos
How Diversity Helps Comcast Mirror Its Customer Base

4|26|17   |   2:55   |   (0) comments


Diversity brings innovation, creative ideas and a way to reflect the broad spectrum of your customer base, Comcast Director of Customer Experience Jenelle Champlin says.
LRTV Huawei Video Resource Center
Mobile Operators & Video

4|25|17   |     |   (0) comments


Ovum's Ed Barton discusses the latest mobile operator strategies for mobile video.
LRTV Custom TV
Infinera Introduces Instant Network

4|20|17   |     |   (1) comment


Mike Capuano, vice president of marketing at Infinera, discusses the advancement from Instant Bandwidth to new Instant Network capabilities, which include Bandwidth License Pools, Moveable Licenses and Automated Capacity Engineering (ACE).
Women in Comms Introduction Videos
Vodafone's Eubank on Sponsors, Mentors & Moving On Up

4|19|17   |   4:25   |   (0) comments


Vodafone America's Head of Operations Kimberly Eubank breaks down the difference between a sponsor and a mentor and shares why both made a big difference in her career.
LRTV Custom TV
NYC Auto Show: Are We Smart Yet?

4|18|17   |     |   (0) comments


The auto industry is facing some big transformations as electric vehicles, autonomous technology and connected cars are seen as the future of the industry. During the much-anticipated NY international auto show, there was an emergence of new technology and mobility service on the show floor. Aside from performance, brands like Lincoln, Hyundai, Honda, Mercedes and ...
LRTV Huawei Video Resource Center
The Impact of Video

4|18|17   |     |   (0) comments


David Mercer from Strategy Analytics discusses the impact of video on current strategies.
LRTV Custom TV
Pardeep Kohli Discusses Network Transformation & the Market Opportunity for the 'New' Mavenir Systems

4|13|17   |     |   (0) comments


In a brief discussion at MWC 2017, Heavy Reading analyst Adi Kishore talks to Pardeep Kohli, CEO, Mavenir Systems about the creation of the 'new Mavenir' and some of the key challenges facing operators in today's market. A key theme of the discussion centers around operator need for software-only, virtualized solutions and how they will need to adapt to ...
Women in Comms Introduction Videos
Tech Maverick Shares Her Tips for Gender Inclusivity

4|12|17   |   7:28   |   (0) comments


Wendy Hall Bohling, a corporate escapee, author and gender exclusivity consultant, tells her story of sexism, bias and progress along the road to gender equality in the workforce.
LRTV Huawei Video Resource Center
Huawei at MWC 2017

4|11|17   |     |   (0) comments


At Mobile World Congress 2017, the biggest mobile industry gathering of the year, Huawei showcased its new innovations and solutions with the theme "Open Road," which focuses on cloud, 5G, operation transformation, videos and consumer-oriented products. Its campaign has been recognized by three awards given by GSMA.
LRTV Custom TV
China Telecom NFV Infrastructure on RSD

4|6|17   |     |   (0) comments


Lynn Comp, senior director of market development of Intel, is joined by Chong Zhang, storage engineer at Inspur and Ou Li Yan, architect for technology strategies of China Telecom, for a discussion of what NFV brings.
LRTV Custom TV
Nokia's IMPACT Software Demo

4|6|17   |     |   (0) comments


Khamis Abulgubein of IoT market development at Nokia demonstrates IMPACT (intelligent management platform for all connected things), a software solution with a horizontal approach to managing any device on any application.
Upcoming Live Events
May 15-17, 2017, Austin Convention Center, Austin, TX
May 15, 2017, Brazos Hall - Austin, TX
May 15, 2017, Austin Convention Center - Austin, TX
June 6, 2017, The Joule Hotel, Dallas, TX
All Upcoming Live Events
Infographics
With the mobile ecosystem becoming increasingly vulnerable to security threats, AdaptiveMobile has laid out some of the key considerations for the wireless community.
Hot Topics
Surprise! AT&T Markets 4G Advances as '5G Evolution'
Dan Jones, Mobile Editor, 4/25/2017
Did Verizon Outbid AT&T for Straight Path?
Dan Jones, Mobile Editor, 4/25/2017
First Year TIPs the Scale Toward Success
Denise Culver, 4/24/2017
Verizon: Small Biz in Cybercrooks' Crosshairs
Carol Wilson, Editor-at-large, 4/27/2017
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
One of the nice bits of my job (other than the teeny tiny salary, obviously) is that I get to pick and choose who I interview for this slot on the Light Reading home ...
TEOCO Founder and CEO Atul Jain talks to Light Reading Founder and CEO Steve Saunders about the challenges around cost control and service monetization in the mobile and IoT sectors.
Live Digital Audio

Playing it safe can only get you so far. Sometimes the biggest bets have the biggest payouts, and that is true in your career as well. For this radio show, Caroline Chan, general manager of the 5G Infrastructure Division of the Network Platform Group at Intel, will share her own personal story of how she successfully took big bets to build a successful career, as well as offer advice on how you can do the same. We’ll cover everything from how to overcome fear and manage risk, how to be prepared for where technology is going in the future and how to structure your career in a way to ensure you keep progressing. Chan, a seasoned telecom veteran and effective risk taker herself, will also leave plenty of time to answer all your questions live on the air.