Light Reading

NTT, NEC, Fujitsu Test 400G Over 10,000km

Light Reading
News Wire Feed
Light Reading
9/5/2014
50%
50%

TOKYO -- NTT Corporation, NEC Corporation, and Fujitsu Limited today announced that they have achieved a successful transmission test of the world’s top-level, 400Gbps/channel-class digital coherent optical transmissions technology, marking a step toward commercialization.

The test, with 400Gbps-class signals multiplexed up to 62 channels, verified fiber-optic transmissions of 12.4-24.8Tbps wavelength division multiplexed signals having different capacities for each modulation method at distances ranging from several thousand kilometers up to 10,000km.

By implementing this technology in an optical transceiver, a quadrupling of optical transmissions was achieved while using existing optical fiber, enabling the construction of the world’s top-level core network, with the ability to handle transmissions of ultra-high-definition videos and the widespread expansion of machine-to-machine (M2M) communications.

Building on these results, the companies will accelerate efforts to commercialize 400Gbps-class optical transmission technology. This R&D initiative was commissioned and is sponsored by Japan’s Ministry of Internal Affairs and Communications (MIC) as part of its “Research and Development Project for the Ultra-high Speed and Green Photonic Networks” program.

Background
To accommodate the explosive growth in data communications traffic stemming from the widespread use of smartphones and fiber to the home, progress is now being made in the market to increase 100Gbps-class optical transmission systems that use digital coherent technology.

NTT, NEC, and Fujitsu have pursued R&D on 100Gbps-class digital coherent optical communication technology as part of the MIC’s “Research and Development on High Speed Optical Transport System Technologies” program (fiscal 2009) and “Research and Development on Ultra-high Speed Optical Edge Node Technologies” program (fiscal 2010-2011). The achievements of these development initiatives are currently being deployed by each company as part of a global roll-out to optical networks throughout the world. In addition, the coherent DSP that was employed in these programs currently holds the world’s top market share.

However, the arrival of a truly big data-based society and surging M2M communications has not just led to increased data volume, but further data diversification, and has necessitated next-generation, optical core networks that are able to transmit ultra-high-speed, high-capacity data both flexibly and economically.

Accordingly, NTT, NEC, and Fujitsu in fiscal 2012 undertook the “Research and Development Project for the Ultra-high Speed and Green Photonic Networks,” a research program sponsored by MIC, and have been moving forward on joint R&D that brings the world’s top level 400Gbps/channel class digital coherent optical transmissions technology to commercialization.

Results
The key technologies that enabled ultra-high speed optical transmission of 400Gbps-class/channel are as follows.

1.Extremely flexible 400Gbps-class adaptive modulation/demodulation technology
In addition to Quadrature Phase Shift Keying (QPSK), which is used in existing 100Gbps transmissions and which superimposes information on the phase of the light, an 8 Quadrature Amplitude Modulation (QAM) and a 16 QAM were used, superimposing information on both the phase and amplitude of the optical waves to expand data volume, and combined with sub-carrier multiplexing enabled by spectral compression technology called Nyquist filtering. By use of these technologies, an ultra-high speed optical transmission of the world’s top-level 400Gbps-class was achieved, allowing for a much higher volume of information to be transmitted compared to that of conventional methods.

In particular, in response to the characteristics of the optical transmission links, by selecting a modulation format appropriate for the quality of the link, in regards to the adaptive modulation/demodulation technology that enables the application of efficient optical network resources, the companies developed the world’s first algorithm that can be implemented in an electronic circuit including an 8 QAM. Transmission ranges of 500 km to 1500km for capacities of 10 — 20Tbps per each core of optical fiber were successfully covered, which was not possible up until now, even with QPSK and 16 QAM. Therefore, the same hardware can support various modulation/demodulation formats in response to the conditions of the transmission line, such as transmission distance, enabling a highly adaptable and flexible network.

2.Compensation function using digital backward propagation signal processing, enabling long-distance transmissions
To achieve 400Gbps-class, ultra-high-speed optical transmissions over long distances, it is necessary to compensate for complex waveform distortions caused by nonlinear optical effects, which are generated with the optical fiber’s refractive index changes in accordance with the intensity of the optical signal as high-power optical signals enter the optical fiber. These distortions would otherwise limit the power of incoming optical signals into the optical fiber.

Up until now, however, compensating for the nonlinear optical effects of multi-level modulation signals within the optical fiber was difficult because the extremely large scale of the circuit made circuit implementation difficult. Therefore, it has been the primary limiting factor standing in the way of extending the distance of transmissions.

To overcome this problem, the companies developed digital backward propagation signal processing, which, through refinements to the algorithm and circuit designs that dramatically reduced the volume of calculations, enabled circuit implementation and compensation of the nonlinear optical effects. They also developed chromatic dispersion estimation technology enabling estimations, for 10,000km of optical fiber, of the values of chromatic dispersion, which is a phenomenon in which the propagation lag times differ for each wavelength in an optical fiber. Moreover, a high-performance MSSC-LDPC (*7) error-correction code was used to enable a further extension of transmission distances. As a result of these technologies, the amount of equipment needed for long-haul transmission can be reduced, leading to expectations that the network would also consume less electricity.

By combining these technologies, NTT, NEC, and Fujitsu successfully performed straight-line transmission tests for optically repeatered transmissions of up to 10,000km over a set-up emulating a submarine cable transmission link and optically repeatered transmissions of up to 3,000km over a set-up emulating a terrestrial transmission link. They also confirmed the viability of functions required for the practical implementation of algorithms enabling circuit implementation. These transmission tests were based on joint research with Japan’s National Institute of Information and Communications Technology (NICT), and were performed using NICT’s testing equipment.

Future Plans
Based on these results, the companies will move forward on development work to quickly put 400Gbps-class optical transmission technology into commercialization with the goal of creating the world’s top-level optical network that delivers flexibility along with ultra-high speeds and low power consumption. In addition, they will collaborate with institutions inside and outside Japan in an aim to deploy their achievements on a global scale.

NTT Group (NYSE: NTT)
Fujitsu Ltd. (Tokyo: 6702; London: FUJ; OTC: FJTSY)
NEC Corp. (Tokyo: 6701)

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
Flash Poll
From The Founder
Last week I dropped in on "Hotlanta," Georgia to moderate Light Reading's inaugural DroneComm conference – a unique colloquium investigating the potential for drone communications to disrupt the world's telecom ecosystem. As you will see, it was a day of exploration and epiphany...
LRTV Documentaries
Cable Eyeing SDN for Headend, Home Uses

5|26|15   |   05:57   |   (1) comment


CableLabs is looking at virtualizing CMTS and CCAP devices in the headend, as well as in-home devices, says CableLabs' Karthik Sundaresan.
LRTV Documentaries
Verizon's Emmons: SDN Key to Cost-Effective Scaling

5|22|15   |   03:53   |   (0) comments


For Verizon and other network operators to ramp up available bandwidth cost effectively, they need to move to SDN and agree on how to do that.
LRTV Documentaries
Lack of Universal SDN a Challenge

5|21|15   |   04:51   |   (3) comments


Heavy Reading Analyst Sterling Perrin talks about how uncertainty about SDN standards and approaches may be slowing deployment.
LRTV Custom TV
Steve Vogelsang Interview: Carrier SDN

5|20|15   |   05:02   |   (0) comments


Sterling Perrin speaks to Steve Vogelsang, Alcatel-Lucent CTO for IP Routing & Transport business, about the new Carrier SDN-enabling Network Services Platform and the operator challenges it solves.
LRTV Custom TV
Carrier SDN: On-Demand Networks for an On-Demand World

5|20|15   |   20:52   |   (0) comments


Steve Vogelsang, Alcatel-Lucent CTO for IP Routing & Transport business, talks about requirements and benefits of Carrier SDN during the keynote address at the Light Reading Carrier SDN event May 2015.
LRTV Documentaries
The Security Challenge of SDN

5|19|15   |   02:52   |   (0) comments


CenturyLink VP James Feger discusses concerns that virtualization could create new vulnerabilities unless network operators build in safeguards.
LRTV Custom TV
NFV Elasticity – Highly Available VNF Scale-Out Architectures for the Mobile Edge

5|18|15   |   5:50   |   (0) comments


Peter Marek and Paul Stevens from Advantech Networks and Communications Group talk about their NFV Elasticity initiative and the company's latest platforms for deploying virtual network functions at the edge of the network. Packetarium XL and the new Versatile Server Module: 'designed to reach parts of the network that other servers cannot reach.'
LRTV Huawei Video Resource Center
Bay Area Spark Meetup 2015

5|14|15   |   3:54   |   (0) comments


Developed in 2009, Apache Spark is a powerful open source processing engine built around speed, ease of use and sophisticated analytics. This spring, Huawei hosted a meetup for Spark developers and data scientists in Santa Clara, California. Light Reading spoke with organizers and attendees about Huawei's code contributions and long-term commitment to Spark.
LRTV Custom TV
The Transport SDN Buzz

5|12|15   |   06:01   |   (1) comment


Sterling Perrin, senior analyst at Heavy Reading, speaks with Peter Ashwood-Smith of Huawei and Guru Parulkar of ON.Lab about the evolution of transport SDN and the integration of technologies.
LRTV Custom TV
Next-Generation CCAP: Cisco cBR-8 Evolved CCAP

5|5|15   |   04:49   |   (0) comments


John Chapman, Cisco's CTO of Cable Access Business Unit and Cisco Fellow, explained the innovation design of Cisco's cBR-8, the industry's first Evolved CCAP, including DOCSIS 3.1 design from ground-up, distributed CCAP with Remote PHY and path to virtualization. Cisco's cBR-8 Evolved CCAP is the platform that will last through the transitions.
LRTV Custom TV
Meeting the Demands of Bandwidth & Service Group Growth

5|1|15   |   5:35   |   (0) comments


Jorge Salinger, Comcast's Vice President of Access Architecture, explains how DOCSIS 3.1 and multi-service CCAP can meet the demands of the bandwidth and service group growth.
LRTV Custom TV
DOCSIS 3.1: Transforming Cable From Hardware-Defined Network to Software-Defined Network

4|29|15   |   03:48   |   (0) comments


John Chapman, Cisco's CTO of Cable Access Business Unit and Cisco Fellow, explains how DOCSIS 3.1 can transform cable HFC network to a more agile software-defined network.
Upcoming Live Events
June 8, 2015, Chicago, IL
June 9, 2015, Chicago, IL
June 9-10, 2015, Chicago, IL
June 10, 2015, Chicago, IL
September 29-30, 2015, The Westin Grand Müchen, Munich, Germany
October 6, 2015, The Westin Peachtree Plaza, Atlanta, GA
October 6, 2015, Westin Peachtree Plaza, Atlanta, GA
All Upcoming Live Events
Infographics
Procera has gathered facts, stats and customer experience feedback from a survey of 540 users from across the globe.
Hot Topics
10 Alternate Uses for Tablets
Eryn Leavens, Copy Desk Editor, 5/22/2015
Bidding War for TWC Looks Likelier
Alan Breznick, Cable/Video Practice Leader, 5/22/2015
Comcast Targets 6 New Gigabit Markets
Mari Silbey, Senior Editor, Cable/Video, 5/21/2015
Eurobites: Alcatel-Lucent Trials 400G in Czech Republic
Paul Rainford, Assistant Editor, Europe, 5/26/2015
Potholes Lurk in Indian Smart City Project
Gagandeep Kaur, Contributing Editor, 5/22/2015
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
On May 29th 10 AM ET, Steve Saunders, founder and CEO of Light Reading, will be drilling into the "pains and gains" of NFV with Saar Gillai, SVP & GM for NFV at Hewlett-Packard Co. (NYSE: HPQ) (HP). He has defined a four-step NFV model describing a sequence of technology innovation. It's a must-read doc for any network architect looking to get to grips with their NFV migration strategy. Join us for the interview, and the chance to ask Saar your NFV questions directly!
With 200 customers in 60 countries, Stockholm-based Net Insight has carved out a solid leadership position in one of the hottest vertical markets going in comms right now: helping service providers and broadcasters deliver video and other multimedia traffic over IP networks. How has Net Insight managed to achieve this success in the face of immense competition from the industry giants?
My ongoing interview tour of the leading minds of the telecom industry recently took me to Richardson, Texas, where I met with Rod Naphan, CTO and SVP, Solutions, ...
Cats with Phones
Too Fluffy to Talk Click Here
Elmer found that his bountiful fur got in the way of meaningful conversation.