& cplSiteName &

Preparing the Transport Network for 5G: The Future Is Fiber

Sterling Perrin
5/22/2017
50%
50%

Having attended the Mobile World Congress and OFC conferences this year, I've seen a consistent theme emerge: Now is the time to prepare transport networks for the coming of 5G. The current industry consensus is for deployment of 5G services to commence broadly in 2020. But preparing for 5G is a tricky proposition, given that 5G New Radio is still in the early stages of standardization.

With 5G radio standardization in flux, can network operators do anything right now to lay the groundwork for 5G transport? The good news is that -- at the physical layer, at least -- the road to 5G is clear: The network will be fiber-based, and the network architecture will be centralized RAN (C-RAN).

C-RAN was introduced at 4G (with commercial deployments ramping now), and adds a new transport network segment for mobile networks: fronthaul. With C-RAN, the radio unit remains at the cell tower, but BBUs are moved away from the cell tower and into central offices, where they have easy communication with each other and with other CO-housed elements. The distance between cell towers and BBUs can be up to 20 km using the standard CPRI protocol.

Two significant points to make on C-RAN:

  • C-RAN is the transport network architecture required for 5G as virtualization of the BBUs (Cloud RAN) will be a key component for making 5G possible. To scale and deliver the promises of virtualization, the C-RAN architecture needs to be implemented today.

  • Fronthaul networks will be predominantly fiber-based due to the combination of capacity and distance requirements. (Microwave may be used in niche cases, but only when fiber is not an option.)

Testing requirements at the physical layer are also straightforward, with the focus on the fiber characterization tests that are critical for any fiber-optic network. That said, there are some differences to understand in preparing for 5G data rates and architectures.

Attenuation
Attenuation is the power reduction of an optical signal as it propagates in a fiber. Common causes of attenuation include dirty or damaged connectors, tight fiber bends, faulty fiber splices and the fiber itself as transmission distance increases. Compared to a distributed RAN, C-RAN introduces two important factors that could increase loss: 1) greater fiber-optic transmission distances, as physical separation between remote head ends and BBUs increases from tens of meters in distributed RAN to 10 km to 20 km; and 2) a greater number of connectors along the transmission route.

An optical time domain reflectometer (OTDR) is the right testing tool for precise attenuation measurements, and should be conducted on any new C-RAN fiber installation. If the OTDR spots connectors with unusually high losses, an inspection probe is useful to decide whether the fiber end face should be cleaned.

Chromatic & Polarization Mode Dispersion
Dispersion is the broadening of an optical pulse and can lead to increased bit error rate in optical transmission. The two most relevant forms today are chromatic dispersion (CD) and polarization mode dispersion (PMD). CD is caused by different wavelengths (colors) in a pulse of light traveling at different speeds. PMD is caused by differences in propagation velocities for different polarization states.

At sub-10G rates, CD and PMD tolerances are very high, but at 10G and above, dispersion becomes an issue. This is an important consideration as mobile backhaul networks move to 10 Gbit/s data rates (and ultimately higher). Distance is also a contributing factor. Test and measurement supplier EXFO recommends dispersion testing for any spans longer than 15 km to 20 km, with this testing being done prior to commissioning to avoid CD/PMD-related failures down the road.

The migration to coherent 100G transmission in long-haul networks and, more recently, in metro networks mitigated a lot of the issues around dispersion impairments due to the power of digital signal processing. But coherent detection also comes with some limitations that were not present in 10G direct detect systems, such as sensitivity to fast changes in state of polarization (SOP) and PMD. Since SOP and PMD can vary in a matter of microseconds, coherent receivers must compensate for PMD and SOP in real time, which sometimes cannot be achieved if they change too fast, leading to loss of signal.

The best way to prevent SOP and PMD compensation failures in coherent receivers is to avoid using fibers with high PMD, because fast changes in SOP and PMD occur more often in high-PMD fibers.

In summary, operators planning for a 5G future can take steps right now at the physical layer by extending fiber out to their cell sites in anticipation of centralized RAN architectures that will be required for any of the protocol scenarios being hammered out at the higher layers. From a physical layer testing perspective, the approach is straightforward with an emphasis on fiber characterization.

Above the physical layer, the situation is a bit more complex for 5G fronthaul and backhaul planning. We will discuss fronthaul/backhaul transport for 5G in a separate blog.

— Sterling Perrin, Principal Analyst, Heavy Reading

This blog is sponsored by EXFO.

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
More Blogs from Heavy Lifting Analyst Notes
Cable is well on the path to meeting 5G backhaul and small cell requirements; however, cable may face competition from mobile network operators (MNOs) and find challenges in technology and regulation limitations.
Taking the pulse of NFV and SDN deployments.
Although many service providers have already deployed software-defined wide area network (SD-WAN) technology and believe it is an integral part of their business, a clear path to vendor success and long-term revenue isn't yet visible.
The Internet of Things (IoT) is growing rapidly, but the lack of standards as well as uncertainty about its revenue potential is a major source of frustration for communications service providers (CSPs).
Whatever strategy CSPs adopt in the emerging IoT landscape, a critical enabler of their IoT business will be the monetization engine.
Featured Video
From The Founder
Light Reading is spending much of this year digging into the details of how automation technology will impact the comms market, but let's take a moment to also look at how automation is set to overturn the current world order by the middle of the century.
Flash Poll
Upcoming Live Events
October 18, 2017, Colorado Convention Center - Denver, CO
November 1, 2017, The Royal Garden Hotel
November 1, 2017, The Montcalm Marble Arch
November 2, 2017, 8 Northumberland Avenue, London, UK
November 2, 2017, 8 Northumberland Avenue London
November 10, 2017, The Westin Times Square, New York, NY
November 16, 2017, ExCel Centre, London
November 30, 2017, The Westin Times Square
May 14-17, 2018, Austin Convention Center
All Upcoming Live Events
Infographics
With the mobile ecosystem becoming increasingly vulnerable to security threats, AdaptiveMobile has laid out some of the key considerations for the wireless community.
Hot Topics
Is US Lurching Back to Monopoly Status?
Carol Wilson, Editor-at-large, 10/16/2017
Pai's FCC Raises Alarms at Competitive Carriers
Carol Wilson, Editor-at-large, 10/16/2017
The Big Cable DAA Update
Mari Silbey, Senior Editor, Cable/Video, 10/11/2017
Telecom Italia Covers 73% of Italy With NB-IoT
Iain Morris, News Editor, 10/13/2017
Tribalism Is Rife in Telecom, Too
Iain Morris, News Editor, 10/13/2017
Animals with Phones
Live Digital Audio

Understanding the full experience of women in technology requires starting at the collegiate level (or sooner) and studying the technologies women are involved with, company cultures they're part of and personal experiences of individuals.

During this WiC radio show, we will talk with Nicole Engelbert, the director of Research & Analysis for Ovum Technology and a 23-year telecom industry veteran, about her experiences and perspectives on women in tech. Engelbert covers infrastructure, applications and industries for Ovum, but she is also involved in the research firm's higher education team and has helped colleges and universities globally leverage technology as a strategy for improving recruitment, retention and graduation performance.

She will share her unique insight into the collegiate level, where women pursuing engineering and STEM-related degrees is dwindling. Engelbert will also reveal new, original Ovum research on the topics of artificial intelligence, the Internet of Things, security and augmented reality, as well as discuss what each of those technologies might mean for women in our field. As always, we'll also leave plenty of time to answer all your questions live on the air and chat board.

Like Us on Facebook
Twitter Feed