WASHINGTON -- Optical fibers –the backbone of the Internet–carry movies, messages, and music at the speed of light. But for all their speedy efficiency, these ultrathin strands of pristine glass must connect to sluggish signal switches, routers, and buffers in order to transmit data. Hoping to do away with these information speed bumps, a team of researchers has developed a new, dual-core optical fiber that can elegantly perform the same functions just by applying a miniscule amount of mechanical pressure.
These new nanomechanical fibers, which have their light-carrying cores suspended less than 1 micrometer apart from each other, could greatly enhance data processing and also serve as sensors in electronic devices. The researchers describe their new fiber and its applications today in the Optical Society’s (OSA) open-access journal Optics Express.
“Nanomechanical optical fibers do not just transmit light like previous optical fibers,” says Wei H. Loh, deputy director of the EPSRC Centre for Innovative Manufacturing in Photonics and researcher at the Optoelectronics Research Centre, both at the University of Southampton, U.K. “Their internal core structure is designed to be dynamic and capable of precise mechanical motion. This mechanical motion, created by applying a tiny bit of pressure, can harness some of the fundamental properties of light to give the fiber new functions and capabilities.”
The blogs and comments are the opinions only of the writers and do not reflect the views of Light Reading. They are no substitute for your own research and should not be relied upon for trading or any other purpose.
To save this item to your list of favorite Light Reading content so you can find it later in your Profile page, click the "Save It" button next to the item.