& cplSiteName &

EPON-Over-Coax Starts Its Standards Journey

Jeff Baumgartner
LR Cable News Analysis
Jeff Baumgartner
1/11/2012
50%
50%

If a new Institute of Electrical and Electronics Engineers Inc. (IEEE) project bears fruit, cable operators might be able to delay costly fiber-to-the-home (FTTH) deployments, or even avoid them altogether.

The proposed physical-layer standard is called EPON-over-Coax (EPoC), and its goal is to provide symmetrical 10Gbit/s speeds over hybrid fiber/coax (HFC) networks. It's just getting started; the first EPoC Study Group meeting will get together on Jan. 24 in sunny Newport Beach, Calif.

Here's the slide deck (PDF) that was presented during an IEEE 802.3 call-for-interest meeting last November. The IEEE voted at that meeting to form the study group, a move that simply "gives us the right to study the problem," says Study Group Chairman Howard Frazier, who also serves as senior technical director at Broadcom Corp. (Nasdaq: BRCM), a chipmaker that has been championing EPoC. (See Broadcom Crafting PON-Speed HFC.)

EPoC will need to be compatible with or work around existing cable services, which tend to vary from operator to operator and from HFC plant to HFC plant.

"There's no way operators will do a forklift upgrade. We'll have to adapt to what they're deploying five years from now," Frazier says. That means EPoC will have to coexist with QAM-based video systems, Docsis 3.0 platforms, cell backhaul deployments and the next-gen Converged Cable Access Platform (CCAP), which some view as a possible bridge to EPoC. (See Comcast Gets Ready for CCAP and Cable Rethinks 'Modular' CCAP .)

Here's an example of how EPoC spectrum might live alongside cable's other services:



QAM's big goodbye?
EPoC could begin to steer cable away from its traditional QAM modulation schemes, and this part of the discussion is expected to be among the most hotly debated as engineers mull ways to modulate Ethernet on coax efficiently.

One idea that will get much attention is orthogonal frequency-division multiplexing (OFDM), a scheme popular in the wireless world that could help cable pump out more bits per hertz than they do today with QAM, says Shane Eleniak, vice president of advanced broadband solutions at CommScope Inc.

CommScope has a chip team (that came on board via the company's purchase of edge QAM maker LiquidxStream Systems Inc.) that's been eyeing the development of a mixed-mode QAM/OFDM Application-Specific Integrated Circuit (ASIC) or a more flexible Field Programmable Gate Array (FPGA) implementation, he notes. (See Why CommScope Bought LiquidxStream.)

Frazier acknowledges that OFDM is one scheme that the working group will likely consider, but he warns that nothing's been decided. "We're going to have a very interesting discussion," he says. "We'll have to duke it out and see what works best."

But the cable industry has definitely fallen in love with EPON. Following heavy adoption of EPON by service providers in Asia, domestic cable has grown partial to the technology in recent years, increasingly relying on it to deliver business services. Taking things a step further, CableLabs has also created a spec that grafts Docsis-style provisioning to EPON services. (See Docsis Gets Its EPON On.)

EPoC timetables
Based on the usual IEEE timetable, an EPoC standard would take about three years to complete. Frazier expects some pre-standard products to start coming out in late 2013 or early 2014. "There will be trials ... but I'm thinking that the deployment horizon will start two to three years out."

He sees initial adoption of EPoC happening in North America and also in China, where it's estimated more than 190 million users are connected to coax today, with 300 million expected to be passed by HFC by 2019, according to China's State Administration of Radio, Film, and Television (SARFT).

Here's who's supporting EPoC so far:

Table 1: EPoC Dudes

Alcatel-Lucent Aurora Networks Inc. Bright House Networks
Broadcom Corp. Cogeco Cable Inc. CableLabs Inc.
Comcast Corp. Cox Communications Inc. Dell Inc.
FiberHome Telecommunication Technologies Co. Ltd. Harmonic Inc. HP
High Speed Design Huawei Technologies Co. Ltd NeoPhotonics Corp.
PMC-Sierra Inc. Qualcomm Inc. Sumitomo Electric Industries
Technical Working Committee of China Radio & TV Association Time Warner Cable Inc. Wuhan Yangtze Optical Technologies Co. Ltd.
ZTE Corp.
Source: IEEE




— Jeff Baumgartner, Site Editor, Light Reading Cable

(8)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
Duh!
50%
50%
Duh!,
User Rank: Light Sabre
12/5/2012 | 5:46:03 PM
re: EPON-Over-Coax Starts Its Standards Journey


... not that it matters.


Why would an MSO go to a different PMD/MAC on legacy HFC plant?  Expecially since DOCSIS is reasonably well optimized for the HFC environment, and EPON was designed for PON.  So, for example, DOCSIS can use contention/reservation for upstream grants because receiver overload is not damaging.  GPON has to use polling/reservation, which is fine because of the relatively small split ratios in the PON, but would (I suspect) tend to be pretty inefficient with a 125:1 split or bigger.


It looks like this scheme is going to require replacing every node, amplifier, and passive in the network to get above 1GHz.  Not that this is unprecedented, but experience shows that this is a non-trivial and expensive enterprise.   We've seen several schemes like this fail to get traction because of the cost of the upgrade.    And it looks like the upstream/downstream bandwidth asymetry gets worse rather than better.  So if you're going to forklift anyway, why not move the high/low split?


DOCSIS 2.0 and above have a more specrtrally efficient upstream modulation scheme, S/CDMA.  How it might compare to any OFDM scheme that 802.3 might come up with is not clear.   While it's likely that there are more spectrally efficient downstream schemes than bonding together 6MHz channels of 64-QAM, I'm not quite seeing downstream efficiency as the long pole in the tent.


It's also not unprecedented for the industry to get distracted by shiny new objects.  Or start up new standards activities with no serious plan to deploy them.


Perhaps somebody with better insight can explain?

Carol Wilson
50%
50%
Carol Wilson,
User Rank: Blogger
12/5/2012 | 5:45:58 PM
re: EPON-Over-Coax Starts Its Standards Journey


I'm not a cable guy and I can't address the issues raised in terms of the modulation schemes or the cost of the upgrades, but in the telecom world, the biggest chunk of change in deploying PON was always  the cost of putting in fiber optic cable to every home. Wouldn't those economics play out here as well?

comtech3
50%
50%
comtech3,
User Rank: Light Beer
12/5/2012 | 5:45:56 PM
re: EPON-Over-Coax Starts Its Standards Journey


In Chestnut Hill,Pennsylvania, there are literally no LEs (line extenders).It is all optical nodes in that Comcast service area because that's why Ralph Roberts and other big wigs in the company live,and use to live.Anyway, my point is that cablecos can do away with LEs all together and allow a single node  to serve about 250 subs.The taps at each location can be converted to optical transceivers and be powered by the same existing hardline coax from the node.In other words, the electronics inside the housing of the node would contain a fiber port and a power output to power the optical transceiver taps.The taps would convert light to RF and vice versa because they would still use the existing coax drop to the home.However,for plant extension, a reserve optical port would be provided.


The cost involved may not be as labor intensive as Verizon Fios because the fiber is already there at the node.The only problem is getting this done where existing plant is underground,and permission for digging up properties and roadways may result in several stumbling blocks as Verizon has found out the hard way.


Despite the affore mentioned diffulties, the approach may be beneficial in the long given the there would be less power consumption from cascading amplifiers, less noise as there won't be any other noise figure (NF) than what is produced by the node.In terms of power outages, the maintenance technician would have a single amp to contend with to apply standby powering.This approach may even be better than RFoG( RF over glass.) Also with no amp cascades, the cablecos will not only able to exceed a 1GHz,but able utilize almost all of the sub-band frequencies.


What do you think?

Halichopter
50%
50%
Halichopter,
User Rank: Light Beer
12/5/2012 | 5:45:46 PM
re: EPON-Over-Coax Starts Its Standards Journey


I think the appeal of EPoC will vary depending on the plant and the channel line up at the particular MSO/region and so will the optimal spectrum splitting. The Chestnut Hill scenario would seem ideal for an upgrade like this. The problems that the initial post raised from the interestingly named "Duh!" are real. However they apply as well to any solution that requires an increase in the upstream spectrum, whether it be more DOCSIS 3.0 channel bonding or a new MAC/PHY like EPoC.  The fewer actives between the node and the subscriber the easier it will be to make the change. The main problem with the current HFC plant spectrum allocation is that the upstream bandwidth is very small compared with the downstream and it is the lowest SNR spectrum available.  In some cases the 5MHz to 12MHz bandwidth is not really useable or only usable with low bits/Hz modulation such as QPSK. This leaves only 42MHz-12mMHz = 30MHz of bandwidth vs > 700MHz for downstream. It is changing the amplfiers, lasers, and diplexers to fix this problem that costs money.


The question of whether the EPoC spectrum must be placed above 1GHz depends on whether the additional upstream bandwidth comes by expanding the current upstream band vs placing it above 1GHz or at high frequencies and also whether bandwidth below 1GHz can be reclaimed via elimination of the analog channels or replacement of the QAM channels. Again, probably the answer differs from one MSO to another.


At first like "Duh!" I was puzzled by the proposal for yet another new modulation scheme beyond the well established DOCSIS 3.0. Do we really need another way of sending data over coax? It is true that some more bandwidth can be squeezed from the plant by using OFDM. There are proposals to use OFDM QAM constellations as large as 4096. However this requires a signal to noise 12dB higher than needed to support the current QAM-256 and only results in 50% more bandwidth (apples to apples not counting elimination of wastful D3.0 guardbands etc.)


I think that the more important consideration may be the cost of the electronics at the headend and home. PON equipment has already been reduced in cost to consumer levels due especially to price pressure from China operators. Considering an EPoC media converter would be shared by multiple homes, the already low PON electronics/optics cost/sub will be further divided.  OFDM is now low in cost since it became the universal wireless solution for WiFi and 4G. Putting the two together could result in a low cost solution compared to DOCSIS 3.0.


Of course everything depends on volume. If the EPoC solutions become splintered by using many different spectral plans or worse, multiple PHYs, and if EPoC is only embraced in the US and not world-wide then the cost reduction may not be compelling.


Time will tell.

Halichopter
50%
50%
Halichopter,
User Rank: Light Beer
12/5/2012 | 5:45:45 PM
re: EPON-Over-Coax Starts Its Standards Journey


We seem to be on the same wavelength (or should I say frequency?), "Duh!"

Duh!
50%
50%
Duh!,
User Rank: Light Sabre
12/5/2012 | 5:45:45 PM
re: EPON-Over-Coax Starts Its Standards Journey


Halichopter,


I was thinking that the only plausible rationale might be something along the lines you're talking about:  effectively, EPON with coax drops. 


I suppose something like that might be feasible.  Trying to overlay it on existing services will be difficult and expensive.   Building a very low cost, energy efficient media converter + optical power splitter that will be a drop-in replacement for (and act as) a multi-tap will be a challenge.  I image that such a device will have somewhat more RF insertion loss than a multi-tap, which may or may not be a problem.   Plus there will be challenges with powering and ODN engineering for the distributed split.  And big construction expenses to overlash fiber on coax.


If that is the architecture they have in mind, it will be interesting to see it play out.


 

Duh!
50%
50%
Duh!,
User Rank: Light Sabre
12/5/2012 | 5:45:45 PM
re: EPON-Over-Coax Starts Its Standards Journey


That wasn't the question.  Without a doubt,  an incumbent with existing coax plant would hope to defer investment in brownfields FTTH infrastructure for as long as possible.  And bandwidth(Hz)/reach curves for coax puts them in a favorable position for doing so, relative to incumbents with existing copper pairs.  


There are lots of good ways for MSOs to increase the downstream bandwidth (and SNR) available for DOCSIS-based services.   They are doing most of them: eliminating analog channels, plant clean-up, SDV, 1GHz upgrades, node segmentation, "fiber rich" architectures.   The long pole in the tent is the limited amount of upstream bandwidth, which is a much more difficult problem.


What I'm seeing here doesn't seem to address those problems.   In fact, I'm not clear as to what problems it does address.


I'll be interested to see Jeff's update.

Light Reading’s Upskill U is a FREE, interactive, online educational resource that delivers must-have education on themes that relate to the overall business transformation taking place in the communications industry.
NEXT COURSE
Wednesday, October 5, 1:00PM EDT
Gigabit & Smart Cities
Joe Kochan, COO & Co-Founder, US Ignite
UPCOMING COURSE SCHEDULE
Friday, October 7, 1:00PM EDT
Gigabit & DOCSIS 3.1
Ty Pearman, Director, Access Architecture, Comcast
Wednesday, October 19, 1:00PM EDT
Securing a Virtual World
Rita Marty, Executive Director, Mobility and Cloud Security, Chief Security Office, AT&T
Friday, October 21, 1:00PM EDT
Security: Evolving the Data Center
Rasool Kareem Irfan, Head, Telecom & Infrastructure Security Practice, Tata Communications Transformation Services Ltd (TCTS)
in association with:
From The Founder
Light Reading today starts a new voyage as part of a larger Enterprise.
Flash Poll
Live Streaming Video
Charting the CSP's Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it's going from two industry veterans.
LRTV Documentaries
From Philly, With Love

9|30|16   |     |   (5) comments


Join Alan Breznick, cable's answer to the Italian Stallion, as he runs through the highlights of SCTE Cable-Tec Expo, lumbers along in Rocky Balboa's footsteps and searches for the perfect Philadelphia cheesesteak.
LRTV Interviews
CenturyLink: SD-WAN Customers Looking for Value Not Cost Savings

9|30|16   |   5:31   |   (0) comments


At NFV & Carrier SDN in Denver, CenturyLink's Eric Nowak told Light Reading that when customers launch SD-WAN, they aren't necessary looking to save money, but instead they are looking for more value from what they're spending. He also shared some unique case studies and lessons learned from launching SD-WAN services.
LRTV Custom TV
Flexible Deployment Approaches for the Gigabit Services Evolution

9|29|16   |     |   (0) comments


For many operators, the gigabit evolution begins with the shift from DOCSIS 3.0 to DOCSIS 3.1. But that move represents a change not only in the protocol itself, but in the approach to architecting their entire DOCSIS delivery chain -- from the headend to the outside plant and home gateway components.

Jonathan Ruff, senior director of global technical ...

LRTV Interviews
Level 3 VP: Enterprises Need More for Less

9|29|16   |   05:27   |   (0) comments


Andrew Dugan, Level 3 group vice president of global technology and IT, says enterprises need more bandwidth and they need it faster and with greater security, but they want to spend less, if possible. They are looking to carriers to reduce their network complexity and help protect them from cyberattacks as well.
LRTV Interviews
CenturyLink: SDN/NFV Pose New Interconnection Possibilities

9|28|16   |   04:37   |   (0) comments


Network operators should develop new APIs and business processes for reselling virtual assets to each other, says CenturyLink's Bill Walker. That will enable them to build digital business portfolios that help them avoid becoming commodity transport providers.
LRTV Interviews
Level 3: Overcoming Terror of Being Supplier, Integrator & Developer

9|28|16   |     |   (0) comments


At Light Reading's NFV & Carrier SDN event in Denver, Travis Ewert of Level 3 Communications said there is terror in becoming supplier, integrator and developer, but it can be overcome and be cost effective.
LRTV Custom TV
Introducing IoT World News

9|27|16   |   01:43   |   (0) comments


Self-driving cars, medical sensors, smart cities... and refrigerators. In order to address the huge scope of IoT, KNect365 has created a unique online community that will help businesses to understand and monetize the opportunities that live within the IoT market. We look forward to welcoming you to IoT World News -- your gateway to a better connected future.
LRTV Interviews
AT&T: Reusable Functions Next NFV Key

9|27|16   |   06:03   |   (0) comments


The next generation of NFV has to break functions down into reusable software chunks, making everything much more cloud-like.
LRTV Interviews
Masergy on Security: Attackers Gaining Upper Hand

9|27|16   |   5:10   |   (2) comments


At Light Reading's NFV & Carrier SDN event in Denver, Ray Watson, vice president of Global Technology at Masergy, says that because of the growth in virtualization, the threat landscape is shifting in favor of the attackers. As a result, service providers need to think beyond just defending the perimeter and take a more holistic approach to security.
LRTV Interviews
Verizon Takes Next Step on Biz Virtualization Journey

9|26|16   |   4:38   |   (2) comments


At September's NFV & Carrier SDN event in Denver, Light Reading sat down with Victoria Lonker, director of Product and New Business Innovation at Verizon, to chat about where the carrier is with delivering virtualized services to business customers.
LRTV Interviews
Global Services: The $40B Face-Off

9|26|16   |   05:53   |   (1) comment


More service providers than ever before are battling it out to win a slice of what is now a $40 billion global communications services pie, explains Ovum Principal Analyst David Molony.
LRTV Documentaries
MEC Congress: The Key Takeaways

9|22|16   |   03:25   |   (3) comments


Three key takeaways from the Mobile Edge Computing (MEC) Congress in Munich, Germany.
Upcoming Live Events
November 3, 2016, The Montcalm Marble Arch, London
November 30, 2016, The Westin Times Square, New York City
December 1, 2016, The Westin Times Square, New York, NY
December 6-8, 2016, The Westin Excelsior, Rome
May 16-17, 2017, Austin Convention Center, Austin, TX
All Upcoming Live Events
Infographics
Hot Topics
AT&T CEO Backs Black Lives Matter
Dan Jones, Mobile Editor, 9/30/2016
Eurobites: Telefónica Taps Juniper for Network Security
Paul Rainford, Assistant Editor, Europe, 9/26/2016
Powell Kills the Cable Show
Mari Silbey, Senior Editor, Cable/Video, 9/29/2016
Telstra Sees Quadrupled Data Capacity by 2020
Carol Wilson, Editor-at-large, 9/28/2016
From Philly, With Love
Alan Breznick, Cable/Video Practice Leader, Light Reading, 9/30/2016
Like Us on Facebook
Twitter Feed
BETWEEN THE CEOs - Executive Interviews
Light Reading CEO Steve Saunders and UXP Systems CEO Gemini Waghmare discuss the strategic importance of digital identity for operators in the midst of transformation.
Join us for an in-depth interview between Steve Saunders of Light Reading and Alexis Black Bjorlin of Intel as they discuss the release of the company's Silicon Photonics platform, its performance, long-term prospects, customer expectations and much more.
Animals with Phones
There's Nothing Like Missing a Full Minute of Pokémon Go Click Here
Live Digital Audio

A vital part of increasing the number of women in comms is transforming the ways companies can support and empower women. While progressive company policies that support both men and women in achieving work-life balance are a step in the right direction, creating a company culture that supports those policies can at times be more challenging.

During this show, we'll talk to Lynn Comp, Senior Director of Industry and Sales Enabling (ISE) in the Network Platforms Group at Intel, about why those challenges exist and how companies can overcome them. She'll provide insight into how Intel has worked to create a culture that supports work-life balance, and provide steps and guidance for other companies wishing to do the same. We will also leave plenty of time to get your questions answered live on the air.