& cplSiteName &

Challenges on the Road to C-RAN Adoption

James Crawshaw
7/10/2017
100%
0%

The great thing about the telecom industry is that people keep inventing new acronyms. Sometimes we lose track of what the acronym actually stands for and sometimes an acronym can mean something different to two different people. Take C-RAN for example. We all agree that RAN stands for Radio Access Network. But does the C stand for Centralized or Cloud? Perhaps China is more appropriate as that is where it seems to have originated.

The reality is that C-RAN stands for both centralized and cloud, as this Heavy Reading report from 2013 explains: C-RAN & LTE Advanced: The Road to "True 4G" & Beyond. The initial focus of C-RAN was on centralization but the end game is cloudification. The centralization phase is all about moving the base band unit (BBU) from the foot of the cell tower to a common location that serves multiple towers. This gives economies of scale in land, power and cooling costs which can be as much as two thirds of a wireless network's operational costs (unless you're in Iceland where cooling is less of an issue). Having a pool of BBUs in a secure, central location also reduces truck roll costs for maintenance.

The next phase, cloudification, is when we replace the proprietary, hardware-based BBUs with software-based BBUs (still proprietary of course) and run them on virtual machines (proprietary or open source) running on commercial off-the-shelf servers (typically using Intel's proprietary x86 processor architecture).

Not all of the functions of a BBU can be handled by COTS servers so there will still be a requirement for some proprietary hardware. A BBU fulfills several functions, some with strict real‑time constraints that require a DSP, others that can be handled with software running on standard CPUs. Non-real-time layer 2 and 3 functions may run as virtual network functions (VNFs) in the NFV cloud. However, real-time layer 1 functions (real‑time digital RF processing, alarms and error handling, error correction) are more difficult to virtualize and will thus continue to run on digital signal processors (DSPs) that are physically located with the remote radio head (RRH).

Nonetheless, a redesigned BBU can offload a lot of routine processing to COTS enabling the hardware consolidation dream of NFV. In theory this leads to both capex and opex savings versus the traditional approach of a dedicated BBU for each cell tower. This article from 2015 cites capex savings of 30% and opex savings of 53% at China Mobile.

Sounds like a no brainer, right? Well, meeting the stringent latency requirements of both TD-LTE and GSM turns out to be quite a challenge when the BBU and RRH are so far apart.

Fronthaul latency challenge
The optical fiber connecting the centralized BBU to the RRHs (power amplifiers, filters and the antenna) is known as fronthaul, a play on the more established term backhaul for the connection from BBU to the core network.

The protocol for the transmission between centralized BBU and the RRHs is either Common Protocol Radio Interface (CPRI) or Open Basestation Architecture Initiative (OBSAI). CPRI takes one optical link per cell, per carrier band and per technology. For example, a cell site with three sectors and 2G, 3G, plus two LTE bands would require 12 CPRI links in each direction: uplink and downlink. Several optical distribution technologies are available including dedicated fibers, passive WDM, active WDM, NG-PON2, and soon Ethernet fronthaul.

The trouble is, CPRI was designed for an optical link between BBU and RRH under the old, distributed architecture when the separation was typically less than 100m. With C-RAN the distance can be up to 25km which introduces more stringent requirements for round‑trip time, latency, and optical power attenuation. This makes choosing the right optical distribution technology critical. For example passive optical networks induce a significant power loss (5‑10 dB) but have low latency. Conversely, active WDM networks regenerate the signal at each hop, which eliminates the power loss issue but adds latency.

Poor FTTA install quality may come back to bite
Assuming you’ve solved the trade-off between power loss and latency with your optical network design you still have the challenge of getting it to work in the field. For many operators, C-RAN will build upon an existing fiber-to-the-antenna (FTTA) deployment program whereby the copper cables, that traditionally connected a BBU in a cabinet at the base of a tower to the RRH located at the top, are replaced by optical fiber. If the FTTA deployment is not done with sufficient care it may transpire that when the operator seeks to upgrade from FTTA to C-RAN they encounter quality issues with the last leg of optical fiber to the RRH when this is spliced to a longer optical link back to a centralized BBU. Returning to the cell site, climbing up to the antenna mast and troubleshooting the root cause of the degradation of radio performance will add significant cost to a C-RAN deployment, undermining its ROI. As my grandmother never said, "a stitch in time saves nine."

This blog is sponsored by EXFO.

— James Crawshaw, Senior Analyst, OSS/BSS Transformation, Heavy Reading

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
More Blogs from Heavy Lifting Analyst Notes
Telecom operators need to move from complex, error-prone manual test processes to more automated, consistent and streamlined test procedures where admin is minimized.
ON2020 has been surveying the optical networking needs and evolution strategies of leading network operators and is ready to share the results at ECOC 2017.
Just a few years ago, Gigabit mobile broadband was almost unthinkable. In 2017 it will be a reality.
Despite some challenges ahead, the utility sector remains a promising one for LPWA, not least because utilities themselves are seeing the benefits of becoming more digital throughout their operations, and because of the increasing coverage of networks and availability of key enabling components, such as communications modules from a broadening ecosystem.
Software-defined wide area network (SD-WAN) is offering cable multiple system operators (MSOs) a leg up in the market, offering solutions other than fiber, such as DOCSIS 3.1; however, it is not without its challenges.
From The Founder
NFV's promises of automation and virtualization are intriguing, but what really excites service providers is the massive amount of money they could save.
Flash Poll
Live Streaming Video
Charting the CSP's Future
Six different communications service providers join to debate their visions of the future CSP, following a landmark presentation from AT&T on its massive virtualization efforts and a look back on where the telecom industry has been and where it's going from two industry veterans.
LRTV Documentaries
Three Gets Smart(y), BT Invokes Twitter – The Recap

8|21|17   |     |   (0) comments


From Telecoms.com, a recap of the week's telecoms talking points. It's been a week of gimmicks as Three tests out a pay-as-you-go sub-brand called Smarty; Comcast
Women in Comms Introduction Videos
VMWare VP Brings Women Up With Her

8|16|17   |   6:49   |   (1) comment


It's an art and a science to make mentorship, inclusive leadership, diversity and promotion of high-potential women work, says Honore' LaBourdette, vice president of Global Market Development at VMWare.
LRTV Documentaries
5G Spectrum Wars – The Recap

8|15|17   |   2:22   |   (0) comments


Service provider 3 has filed a lawsuit against Ofcom over 5G spectrum auction in the UK.
LRTV Custom TV
Say What? Facebook Unleashes AI Anarchy – The Recap

8|7|17   |     |   (0) comments


A recap of the week's talking points on Light Reading's sister site, telecoms.com. Facebook AI programmers had a bit of a brain-fade as they allowed one of its AI applications to invent its ...
Women in Comms Introduction Videos
Fujitsu's Women Band Together to Help Girls Do STEM

8|2|17   |   9:35   |   (1) comment


Supporting women both inside and outside of Fujitsu is a top priority of the telecom vendor. Yanbing Li, Fujitsu Network Communication's director of System Software Development & Delivery, shares why it's important, but why there's still a long road ahead.
LRTV Custom TV
If You're Not First, You're Last – The Recap

7|31|17   |   08:18   |   (1) comment


In case you missed it, Amazon's 1% stock increase helped Jeff Bezos dethrone Bill Gates as the richest man in the world. Also, Taiwanese electronics manufacturer
Women in Comms Introduction Videos
AT&T's Tech President Preps Workforce for the Future

7|26|17   |   5:47   |   (10) comments


AT&T is focused on the software-defined network of the future and is reskilling its workforce to get ready too, according to AT&T's President of Technology Development Melissa Arnoldi.
Women in Comms Introduction Videos
Cisco: Mentoring Critical to Attract & Retain Women

7|19|17   |   6:40   |   (1) comment


Liz Centoni, senior vice president and general manager of Cisco's Computing System Product Group, shares why mentoring in all its forms is important for women and what Cisco is doing that's made a difference for women in tech.
LRTV Custom TV
Gigabit LTE With Snapdragon 835

7|12|17   |     |   (1) comment


At an event in Wembley stadium, EE used its live network to demonstrate gigabit LTE using a Sony Xperia XZ Premium smartphone with a Qualcomm Snapdragon 835 chip.
LRTV Custom TV
Implementing Machine Intelligence With Guavus

7|12|17   |     |   (0) comments


Guavus unites big data and machine intelligence, enabling many of the the largest service providers in the world to save money and drive measureable revenue. Learn how applying Machine Intelligence substantially reduces operational costs and in many cases can eliminate subscriber impact, meaning a better subscriber experience and higher NPS.
LRTV Custom TV
Unlocking Customer Experience Insights With Machine Intelligence

7|12|17   |     |   (0) comments


When used to analyze operational data and to drive operational decisions, machine intelligence reduces the number of tasks which require human intervention. Guavus invested in Machine Intelligence early. Learn about the difference between Machine Learning and Machine Intelligence.
Women in Comms Introduction Videos
Verizon VP Talks Network, Career Planning

7|12|17   |   4:49   |   (0) comments


Heidi Hemmer, vice president of Technology, Strategy & Planning at Verizon, shares how bold bets and the future of tech define her career.
Upcoming Live Events
September 28, 2017, Denver, CO
October 18, 2017, Colorado Convention Center - Denver, CO
November 1, 2017, The Royal Garden Hotel
November 1, 2017, The Montcalm Marble Arch
November 2, 2017, 8 Northumberland Avenue, London, UK
November 30, 2017, The Westin Times Square
All Upcoming Live Events
Infographics
With the mobile ecosystem becoming increasingly vulnerable to security threats, AdaptiveMobile has laid out some of the key considerations for the wireless community.
Hot Topics
Intel CEO Leaves Trump Biz Advisory Board
Dan Jones, Mobile Editor, 8/15/2017
Orchestration Startup UBiqube Pivots Away From NFV
Carol Wilson, Editor-at-large, 8/15/2017
T-Mobile Turns On First 600MHz 4G Sites
Dan Jones, Mobile Editor, 8/16/2017
WiCipedia: Dolly Babes, Manifesto Backlash & 'Brotastic' Failures
Eryn Leavens, Special Features & Copy Editor, 8/18/2017
Stream or Split, Says Amazon
Aditya Kishore, Practice Leader, Video Transformation, Telco Transformation, 8/16/2017
Like Us on Facebook
Twitter Feed
Animals with Phones
Talk About a Custom-Made Workstation! Click Here
Proper ergonomics indeed.
Live Digital Audio

Understanding the full experience of women in technology requires starting at the collegiate level (or sooner) and studying the technologies women are involved with, company cultures they're part of and personal experiences of individuals.

During this WiC radio show, we will talk with Nicole Engelbert, the director of Research & Analysis for Ovum Technology and a 23-year telecom industry veteran, about her experiences and perspectives on women in tech. Engelbert covers infrastructure, applications and industries for Ovum, but she is also involved in the research firm's higher education team and has helped colleges and universities globally leverage technology as a strategy for improving recruitment, retention and graduation performance.

She will share her unique insight into the collegiate level, where women pursuing engineering and STEM-related degrees is dwindling. Engelbert will also reveal new, original Ovum research on the topics of artificial intelligence, the Internet of Things, security and augmented reality, as well as discuss what each of those technologies might mean for women in our field. As always, we'll also leave plenty of time to answer all your questions live on the air and chat board.