& cplSiteName &

Challenges on the Road to C-RAN Adoption

James Crawshaw
7/10/2017
100%
0%

The great thing about the telecom industry is that people keep inventing new acronyms. Sometimes we lose track of what the acronym actually stands for and sometimes an acronym can mean something different to two different people. Take C-RAN for example. We all agree that RAN stands for Radio Access Network. But does the C stand for Centralized or Cloud? Perhaps China is more appropriate as that is where it seems to have originated.

The reality is that C-RAN stands for both centralized and cloud, as this Heavy Reading report from 2013 explains: C-RAN & LTE Advanced: The Road to "True 4G" & Beyond. The initial focus of C-RAN was on centralization but the end game is cloudification. The centralization phase is all about moving the base band unit (BBU) from the foot of the cell tower to a common location that serves multiple towers. This gives economies of scale in land, power and cooling costs which can be as much as two thirds of a wireless network's operational costs (unless you're in Iceland where cooling is less of an issue). Having a pool of BBUs in a secure, central location also reduces truck roll costs for maintenance.

The next phase, cloudification, is when we replace the proprietary, hardware-based BBUs with software-based BBUs (still proprietary of course) and run them on virtual machines (proprietary or open source) running on commercial off-the-shelf servers (typically using Intel's proprietary x86 processor architecture).

Not all of the functions of a BBU can be handled by COTS servers so there will still be a requirement for some proprietary hardware. A BBU fulfills several functions, some with strict real‑time constraints that require a DSP, others that can be handled with software running on standard CPUs. Non-real-time layer 2 and 3 functions may run as virtual network functions (VNFs) in the NFV cloud. However, real-time layer 1 functions (real‑time digital RF processing, alarms and error handling, error correction) are more difficult to virtualize and will thus continue to run on digital signal processors (DSPs) that are physically located with the remote radio head (RRH).

Nonetheless, a redesigned BBU can offload a lot of routine processing to COTS enabling the hardware consolidation dream of NFV. In theory this leads to both capex and opex savings versus the traditional approach of a dedicated BBU for each cell tower. This article from 2015 cites capex savings of 30% and opex savings of 53% at China Mobile.

Sounds like a no brainer, right? Well, meeting the stringent latency requirements of both TD-LTE and GSM turns out to be quite a challenge when the BBU and RRH are so far apart.

Fronthaul latency challenge
The optical fiber connecting the centralized BBU to the RRHs (power amplifiers, filters and the antenna) is known as fronthaul, a play on the more established term backhaul for the connection from BBU to the core network.

The protocol for the transmission between centralized BBU and the RRHs is either Common Protocol Radio Interface (CPRI) or Open Basestation Architecture Initiative (OBSAI). CPRI takes one optical link per cell, per carrier band and per technology. For example, a cell site with three sectors and 2G, 3G, plus two LTE bands would require 12 CPRI links in each direction: uplink and downlink. Several optical distribution technologies are available including dedicated fibers, passive WDM, active WDM, NG-PON2, and soon Ethernet fronthaul.

The trouble is, CPRI was designed for an optical link between BBU and RRH under the old, distributed architecture when the separation was typically less than 100m. With C-RAN the distance can be up to 25km which introduces more stringent requirements for round‑trip time, latency, and optical power attenuation. This makes choosing the right optical distribution technology critical. For example passive optical networks induce a significant power loss (5‑10 dB) but have low latency. Conversely, active WDM networks regenerate the signal at each hop, which eliminates the power loss issue but adds latency.

Poor FTTA install quality may come back to bite
Assuming you’ve solved the trade-off between power loss and latency with your optical network design you still have the challenge of getting it to work in the field. For many operators, C-RAN will build upon an existing fiber-to-the-antenna (FTTA) deployment program whereby the copper cables, that traditionally connected a BBU in a cabinet at the base of a tower to the RRH located at the top, are replaced by optical fiber. If the FTTA deployment is not done with sufficient care it may transpire that when the operator seeks to upgrade from FTTA to C-RAN they encounter quality issues with the last leg of optical fiber to the RRH when this is spliced to a longer optical link back to a centralized BBU. Returning to the cell site, climbing up to the antenna mast and troubleshooting the root cause of the degradation of radio performance will add significant cost to a C-RAN deployment, undermining its ROI. As my grandmother never said, "a stitch in time saves nine."

This blog is sponsored by EXFO.

— James Crawshaw, Senior Analyst, OSS/BSS Transformation, Heavy Reading

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View        ADD A COMMENT
More Blogs from Heavy Lifting Analyst Notes
Cable is well on the path to meeting 5G backhaul and small cell requirements; however, cable may face competition from mobile network operators (MNOs) and find challenges in technology and regulation limitations.
Taking the pulse of NFV and SDN deployments.
Although many service providers have already deployed software-defined wide area network (SD-WAN) technology and believe it is an integral part of their business, a clear path to vendor success and long-term revenue isn't yet visible.
The Internet of Things (IoT) is growing rapidly, but the lack of standards – as well as uncertainty about its revenue potential – is a major source of frustration for communications service providers (CSPs).
Whatever strategy CSPs adopt in the emerging IoT landscape, a critical enabler of their IoT business will be the monetization engine.
Featured Video
From The Founder
Light Reading is spending much of this year digging into the details of how automation technology will impact the comms market, but let's take a moment to also look at how automation is set to overturn the current world order by the middle of the century.
Flash Poll
Upcoming Live Events
November 1, 2017, The Royal Garden Hotel
November 1, 2017, The Montcalm Marble Arch
November 2, 2017, 8 Northumberland Avenue, London, UK
November 2, 2017, 8 Northumberland Avenue – London
November 10, 2017, The Westin Times Square, New York, NY
November 16, 2017, ExCel Centre, London
November 30, 2017, The Westin Times Square
May 14-17, 2018, Austin Convention Center
All Upcoming Live Events
Infographics
With the mobile ecosystem becoming increasingly vulnerable to security threats, AdaptiveMobile has laid out some of the key considerations for the wireless community.
Hot Topics
Muni Policies Stymie Edge Computing
Carol Wilson, Editor-at-large, 10/17/2017
'Brutal' Automation & the Looming Workforce Cull
Iain Morris, News Editor, 10/18/2017
Is US Lurching Back to Monopoly Status?
Carol Wilson, Editor-at-large, 10/16/2017
Pai's FCC Raises Alarms at Competitive Carriers
Carol Wilson, Editor-at-large, 10/16/2017
Worried About Bandwidth for 4K? Here Comes 8K!
Aditya Kishore, Practice Leader, Video Transformation, Telco Transformation, 10/17/2017
Animals with Phones
Selfie Game Strong Click Here
Latest Comment
Live Digital Audio

Understanding the full experience of women in technology requires starting at the collegiate level (or sooner) and studying the technologies women are involved with, company cultures they're part of and personal experiences of individuals.

During this WiC radio show, we will talk with Nicole Engelbert, the director of Research & Analysis for Ovum Technology and a 23-year telecom industry veteran, about her experiences and perspectives on women in tech. Engelbert covers infrastructure, applications and industries for Ovum, but she is also involved in the research firm's higher education team and has helped colleges and universities globally leverage technology as a strategy for improving recruitment, retention and graduation performance.

She will share her unique insight into the collegiate level, where women pursuing engineering and STEM-related degrees is dwindling. Engelbert will also reveal new, original Ovum research on the topics of artificial intelligence, the Internet of Things, security and augmented reality, as well as discuss what each of those technologies might mean for women in our field. As always, we'll also leave plenty of time to answer all your questions live on the air and chat board.

Like Us on Facebook
Twitter Feed
Partner Perspectives - content from our sponsors
The Mobile Broadband Road Ahead
By Kevin Taylor, for Huawei
All Partner Perspectives