Light Reading
Extensive testing of new 400 Gbit/s systems is critical for network operators if they are to save themselves from post-deployment performance and opex pressures.

Are You Really Getting 400 Gbit/s Performance?

Sterling Perrin
9/11/2013
0%
100%

Driven by continuing IP traffic growth, a new generation of 400 Gbit/s network processors is beginning to emerge. Such processors have been announced by a handful of vendors, with more to come.

However, scaling from 100 Gbit/s to 400 Gbit/s processors is not an easy feat. Recently, we witnessed some 400 Gbit/s network processor performance testing in a lab and were surprised by some of the results. Based on this data, we believe that there may be some wide variations between what is claimed on spec sheets and the real world performance that is achievable.

We believe that service providers evaluating new higher capacity systems must perform extensive testing on their own in order to ensure that the high-end systems perform as advertised under a variety of conditions that mirror real-world traffic mixes and traffic growth. Otherwise, service providers may be stuck with true performance that is far below the advertised 400G sticker. In fact, under certain conditions, true performance may not even be better than the legacy routers that are being replaced.

One important test is the packet sweep test. The packet sweep tests router performance over a spectrum of different packet sizes, from small (64 bytes) to large (1,500 bytes or greater), in order to ensure consistent performance across the full range of incoming packet variants. It is somewhat counterintuitive, but the greatest demands on the processor occur at the smallest packet sizes. The reason is that small packet sizes force greater amounts of table look-ups per second, and this burdens the processor.

The test we reviewed showed a 400 Gbit/s processor consistently dropping packets at all sizes, both small and large. As the packet size increased, the performance did not improve. On a few occasions, packets dropped by as much as 50 percent, and we never saw more than 80 percent throughput at any point in the test.

A second test, known as the Internet mix (or IMIX) test, was reviewed. Just as there is no typical packet size, there is no typical service provider IP traffic mix. It varies greatly from provider to provider. The test we reviewed used a couple of different real-world IMIX samples provided by service providers, based on their network scenarios. The results showed poor performance across a range of IMIX profiles. The processor appeared to suffer from problems related to storing packets for lookup, which resulted in severe performance impact on all traffic types tested. Significantly, when comparing two generations of processor performance, the new 400 Gbit/s processor demonstrated anywhere from 20 percent to 50 percent less performance based on serviceable bandwidth.

A third test measured the performance of a processor while enabling service level agreements (SLAs). Here, the results showed that enabling SLAs on connections reduced the actual throughput of the processor from 400 Gbit/s to 100 Gbit/s, meaning that only 50 percent of the advertised 100 GigE ports would be available with SLAs turned on.

The tests above are tied closely to the conventional views of scale, meaning the ability to handle more and more bits through the processor and on the network. As the Internet evolves from person-to-person communications to the machine-to-machine dominated Internet of things, another component of scale is becoming increasingly important: the ability to handle more and more flows through the network.

For next-generation routers, this means they must not only process massive amounts of bits, but they must also be able to process massive numbers of flows. Routers equipped with 400 Gbit/s processors must be tested in their abilities to handle tens of thousands of flows. As a rule of thumb, a 10 GigE port will typically serve 500 customers. If we assume just four classes of service per customer (a low assumption), this creates 2,000 different flows per 10 GigE port. With 20 x 10 GigE ports per line card (the state-of-the-art in existing designs), this creates 40,000 different flows per card. As we move to an Internet of things, it is very possible that these next-gen routers could hit performance limits on supported flows long before they hit their maximum capacities in bit/s. It is another dimension of scale that must be accounted for and tested in evaluating core routers.

The final point we will touch upon is efficiency in power consumption and footprint. It is well understood that these opex factors are of critical importance to service providers. In some regions, where power costs are well above global averages or where equipment is deployed in dense urban areas where space is severely limited, power and space requirements may make or break a buying decision. Even in the US, however, we have had discussions with large service providers who place power and space at the top of their lists.

Here again, service providers need to dig deeper than the power and space requirements that are advertised. To get a true understanding of space and power, these advertised specs must be placed in the context of the overall performance of the system -- as determined by packet sweep tests, IMIX tests, flow limitations, and any other tests that are performed on the system.

For example, if performance testing and evaluations show that a system will perform at 80 percent of its capacity limits under real-world network conditions, then this needs to be taken into account for space and power consumption. In this case, 20 percent more space and 20 percent greater power consumption would be needed to achieve 400 Gbit/s of capacity. Failing to account for any performance limitations sets service providers up for unwelcome opex surprises when these new systems start to fill up in the network.

In summary, vendors rolling out new 400 Gbit/s silicon promise routers that are smarter, faster, and greener than previous generations, but some in-depth test results we've seen indicate that this may not be the case. Service providers cannot afford to rely on vendor claims in this area. Rather, extensive testing -- of the kind weve described in this article -- is a must. The added time and costs of upfront testing will pay dividends for years to come.

This blog was commissioned by Cisco Systems. The blog was created independently of Cisco, and Heavy Reading is wholly responsible for its contents.

— Sterling Perrin, Senior Analyst, Heavy Reading


Interested in learning more on this topic? Then come to Ethernet & SDN Expo, a Light Reading Live event that takes place on October 2-3, 2013 at the Javits Center in New York City. Co-located with Interop, Light Reading's Ethernet & SDN Expo will focus on how the convergence of Carrier Ethernet 2.0 with emerging carrier software-defined networking (SDN) and network functions virtualization (NFV) technologies could change the whole telecom landscape for service providers. For more information, or to register,
click here
.


(15)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View
Page 1 / 2   >   >>
mfaisalk
50%
50%
mfaisalk,
User Rank: Lightning
9/14/2013 | 11:05:32 PM
400G performance
We need to be careful with our judgements here. It is one vendor testing another vendor. What good you can expect here ?

 

Faisal
David Burns
50%
50%
David Burns,
User Rank: Light Beer
9/13/2013 | 2:05:16 PM
Check the math
Quote (snipped for conciseness):
if performance testing and evaluations show that a system will perform at 80 percent of its capacity limits under real-world network conditions ... 20 percent more space and 20 percent greater power consumption would be needed to achieve 400 Gbit/s of capacity.

Wrong. If actual performance is 20% lower, you need to provision 25% more equipment to achieve the targeted performance. Simple example: 8 x 400 Gbit/s should give you 3200 Gbit/s. If processors perform at 80%, actual performance of one processor is 320 GBit/s, so you need 10 to reach your target - 25% more than 8.
desiEngineer
50%
50%
desiEngineer,
User Rank: Light Beer
9/13/2013 | 1:17:08 PM
Re: Which network processor tests?
Sterling,

If you can guarantee that the tests were fair and impartial, then yes, enquiring minds want to know.

If not, don't attach your name (and LightReading's), and then hide behind some "this is newsworthy" BS.  And I don't care how sophisticated and expensive the lab is, I am not ingenuous enough to believe that the lab was created for the purpose of the general public.  Clue#1: I haven't seen one report come out of that lab that showed a single Cisco product in a negative light.

No vendor has a vested interest in impartiality.  Knowing how much marketing is attached to all claims, it behooves the operators to do their due diligence, but to pretend that Cisco can do that due diligence for all of us is naive at best.

-desi
Surfer Blue
50%
50%
Surfer Blue,
User Rank: Light Beer
9/13/2013 | 12:54:07 PM
Re: Which network processor tests?
Service providers do extensive testing before deploying any new hardware in their networks.  FP3 cards have been available for a couple of years and are widely deployed – clearly they have been thouroughly vetted in the field.  Personally I'd take real world testing and deployment experience over contrived competitor lab testing any day.  

 
sterlingperrin
50%
50%
sterlingperrin,
User Rank: Lightning
9/13/2013 | 9:36:34 AM
Re: Which network processor tests?
Yarn,

You are correct - I have no interest in standing in the middle. Here's the thing. Cisco has a test lab that would be the envy of all but the very largest tier 1 operators. They conduct very thorough and very expensive testing of their competitors' products, which they've been doing for 13 years (probably not something they want publicized). In this case, they came to us - and some other media as well - with information from their labs that was compelling and newsworthy.

Are we saying that Cisco's results are conclusive about ALU, or any particular competitor? Absolutely not!! But we do believe there was enough in there to raise broad questions and write this piece.

I have received calls from people at ALU who are understandably upset. They are getting calls from customers who are asking questions. It's not an easy thing to go through, I'm sure, but as media, it is our job to bring the right topics of debate to the forefront and spark the dialogue. We made a judgment that 400G performance testing is a legitimate topic and that questions should be asked of all 400G NP players - ALU, Cisco, Huawei, Juniper, and any other market entrants that emerge.

Sterling

 
mendyk
50%
50%
mendyk,
User Rank: Light Sabre
9/12/2013 | 7:28:34 PM
Re: Which network processor tests?
We note the sponsorship of the blog for full-disclosure purposes. We also note that Heavy Reading is wholly responsible for the content. The post by Sterling calls attention to the fact that performance claims often do not pass scrutiny, which means operators should do their own evaluations before making purchase decisions.
tb100
50%
50%
tb100,
User Rank: Moderator
9/12/2013 | 6:01:11 PM
Re: Which network processor tests?
Wait a minute. Did you just say, and I quote: "It is Cisco's testing of Alcatel-Lucent's 400G processor"? (and 'blog was commissioned by Cisco Systems')?

So Cisco paid you to write an article that shows the 'results' of their testing of a competitor's product? Aren't the results pretty much predetermined, no matter what the capabilities of the product?

 

I am at a loss for words....
yarn
100%
0%
yarn,
User Rank: Light Sabre
9/12/2013 | 2:06:22 PM
Re: Which network processor tests?
Sterling,

Why lend your name to help Cisco get credibility for this type of quasi-technical FUD bs articles they're so well known for? Now you're caught in the middle and have to stand up for their crap, and tarnish your own credibility in the process.  
mendyk
50%
50%
mendyk,
User Rank: Light Sabre
9/12/2013 | 11:53:53 AM
Re: Which network processor tests?
All product testing -- including tests from independent labs -- should come with a big "grain of salt" warning. And in the case of vendor-run tests, results are clearly subject to question, especially from competing suppliers who had no influence on how the testing was done. From the point of view of prospective customers, though, it's important to understand when performance claims come with an asterisk or two.
sterlingperrin
50%
50%
sterlingperrin,
User Rank: Lightning
9/12/2013 | 11:11:34 AM
Re: Which network processor tests?
Manish,

Correct, we thought there was value in the piece as a call for due diligence.

If service providers are testing these systems at their limits across scenarios applicable to their network (including growth and possible changes to traffic patterns, etc.) then they are covered.

400 Gbit/s is very new. I don't how much testing has been done by anyone yet.

Sterling

 
Page 1 / 2   >   >>
More Blogs from Heavy Lifting Analyst Notes
Because of difficulty acquiring spectrum, many utilities are forgoing LTE, and turning to legacy technologies such as CDMA and WiMax.
The machine-to-machine (M2M) and Internet of Things (IoT) markets will grow exponentially, requiring more robust testing solutions.
Aggregation and edge transport networks are undergoing a wave of innovation.
The challenges associated with small cell deployments, the impact of virtualization, and the demand for dark fiber are just some of the topics to be debated at the upcoming Backhaul Strategies conference in New York City.
The news that Apple's new iPhone 6 will now support Voice over LTE kind of a big deal.
Flash Poll
From The Founder
It's clear to me that the communications industry is divided into two types of people, and only one is living in the real world.
LRTV Custom TV
Using Service Quality to Drive WiFi Monetization

10|22|14   |   6:51   |   (0) comments


Live from the SCTE conference: Heavy Reading's Alan Breznick explores the forces shaping the WiFi opportunity in an interview with CableLabs' Justin Colwell and Amdocs' Ken Roulier.
LRTV Custom TV
Distributed Access Architectures – 2

10|21|14   |   8:51:00 AM   |   (0) comments


ARRIS CTO Network Solutions Tom Cloonan discusses why many if not most MSOs will continue with integrated CCAP, while addressing why some are also looking at two futuristic, distributed access architectures: Remote PHY and Remote CCAP.
LRTV Custom TV
Distributed Access Architectures – 1

10|21|14   |   9:01   |   (0) comments


SCTE Sr. Director of Engineering Dean Stoneback discusses the pros and cons of distributed access architecture (DAA) and its various forms, which range from basic Remote PHY to full CMTS functionality in the node.
LRTV Custom TV
The WiFi Road to Riches – 2

10|21|14   |   3:58   |   (0) comments


ARRIS Senior Solution Architect Eli Baruch talks about how MSOs can enable public and community WiFi through 1) outdoor access points, 2) businesses seeking to offer WiFi to customers, and 3) residential WiFi gateway extensions.
LRTV Custom TV
The WiFi Road to Riches – 1

10|21|14   |   10:15   |   (0) comments


SCTE Director of Advanced Technologies Steve Harris discusses WiFi deployments, drivers, challenges and advances, including 802.11ac, carrier-grade WiFi, community WiFi, Hotspot 2.0, Passpoint, WiFi-First and voice-over-WiFi.
LRTV Custom TV
Advantech Accelerates 100G Traffic Handling

10|17|14   |   7:56   |   (0) comments


Paul Stevens from Advantech explains why handling 100GbE needs a whole new platform design approach and how Advantech is addressing the needs of equipment providers and carriers to give them the flexibility and performance they will need for SDN and NFV deployment.
LRTV Huawei Video Resource Center
Holland's Imtech Traffic & Infra Discusses Huawei's ICT Solution and Services

10|16|14   |   4:49   |   (0) comments


Dimitry Theebe is from the business unit at Imtech Traffic & Infra which delivers communications solutions for transportations. His partnershp with Huawei began about a years ago. In this video, Theebe speaks more about this partnership and what he hopes to accomplish with Huawei.
LRTV Huawei Video Resource Center
Huawei's Comprehensive Storage Solutions Vital for SVR

10|16|14   |   6:16   |   (0) comments


SVR Information Technology provides cloud services for academic and special sectors. With Huawei's support, SVR and Yildiz Technical University has established Turkey's largest and most advanced High Performance Computing system. CSO Ismail Cem Aslan talks about what he hopes Huawei's OceanStor storage system will bring for him.
LRTV Huawei Video Resource Center
Mexico's Servitron's Impression of Huawei at CCW 2014

10|16|14   |   6:35   |   (0) comments


Servitron is a network operator in Mexico that has been in the trunking industry for the past 20 years. Its COO, Ing. Ragnar Trillo O., explains at Critical Communications World 2014 that his company has been interested in the long-term evolution of LTE technology and its adoption for TETRA.
LRTV Huawei Video Resource Center
Building a Better Dubai

10|16|14   |   2:06   |   (0) comments


Abdulla Ahmed Al Falasi is the director of commercial affairs, a telecommunications coordinator for the government of Dubai. Their areas of service span across multiple industries, including police, safety, shopping malls and more. In this video, Abdulla talks about his department's work with Huawei.
LRTV Huawei Video Resource Center
Huawei Lights Up Malaysia Partner Maju Nusa

10|16|14   |   1:59   |   (0) comments


Malaysia's Maju Nusa is an enterprise partner to Huawei in networking, route switches and telco equipment. At this year's Critical Communications World in Singapore, CTO Pushpender Singh talks about what Huawei's eLTE solutions mean to his company and for Malaysia.
LRTV Custom TV
Evolving From HFC to FTTH Networks

10|15|14   |   2:19   |   (0) comments


Cisco's Todd McCrum delves into the future of cable's HFC plant, examining how DOCSIS 3.1 and advanced video compression will extend its life and how the IP video transition will usher in GPON and EPON over FTTH.
Upcoming Live Events
October 29, 2014, New York City
November 6, 2014, Santa Clara
November 11, 2014, Atlanta, GA
December 2, 2014, New York City
December 3, 2014, New York City
December 9-10, 2014, Reykjavik, Iceland
February 10, 2015, Atlanta, GA
June 9-10, 2015, Chicago, IL
Infographics
WhoIsHostingThis.com presents six of the world's most extreme WiFi hotspots, enabling the most epic selfies you can imagine.
Hot Topics
Analysts Warn of Major NFV Gaps
Carol Wilson, Editor-at-large, 10/22/2014
Is Health the Killer App for the IoT?
Jason Meyers, Senior Editor, Gigabit Cities/IoT, 10/22/2014
Drones Hover Over the IoT Sector
Jason Meyers, Senior Editor, Gigabit Cities/IoT, 10/23/2014
The Human Gain of the Smart Home
Robin Mersh, 10/20/2014
Zayo Zooms Out of the IPO Gate
Dan O'Shea, Managing Editor, 10/17/2014
Like Us on Facebook
Twitter Feed