Light Reading
Infineon claims to have produced the first multilayer electronic integrated circuit -- a chip 'sandwich,' if you will

Infineon's Chip Sandwich

Light Reading
Out of the Lab
Light Reading
8/14/2002
50%
50%

Yesterday, Infineon Technologies AG (NYSE/Frankfurt: IFX) announced what it claims is a breakthrough in chip packaging technology: a technique that allows two electronic ICs (integrated circuits) to be squeezed into the space formerly occupied by one (see Infineon Intros 'Sandwich' Chip System).

Put simply, the German chipmaker has come up with a way to solder two chips together, one above the other, using a layer of copper in which chip-to-chip interconnections can be formed.

Infineon claims that its technology offers "a way out of the wiring crisis" -- referring to the fact that the number of pin-outs on a chip, and the number of traces on a printed circuit board, are starting to limit the functionality that can be put inside the chip itself. Reducing those wires to short copper links inside a "sandwich" allows chips to run faster, take up less space, and could reduce costs by up to 30 percent, the company contends.

Clever though it is, the idea of using stacked chips is not unique to Infineon. Others, including Sharp Foundry Services (part of Japanese electronics giant Sharp Ltd.) and Intel Corp. (Nasdaq: INTC), have developed so-called chip scale packages (CSPs) with up to four chips stacked on top of each other.

The different lies in the interconnects, says Reiner Schönrock, spokesperson at Infineon's worldwide headquarters in Munich. Stacked CSPs from other companies make connections using standard wire-bonding around the edges of the silicon die, rather than the copper sandwich developed by Infineon. "This [copper sandwich] is true 3D integration," Schönrock claims.

All stacked CSPs save on space and the costs associated with packaging, an approach that has turned out to be a big hit with manufacturers of mobile handsets. But Infineon's approach has several additional advantages over technologies from the likes of Sharp and Intel, which will open up other applications, says Schönrock.

For starters, the connections between chips are much shorter, so they can support faster speeds. The company claims that clock speeds of up to 200 GHz should be possible with its chips -- roughly 100 times faster than the fastest microprocessor today. This figure is a little hard to believe, but clearly this process has implications for fast communications technologies, including mobile and broadband networking.

The other key advantage is in heat dissipation. Since 80 percent of the chip's surface is covered by copper, which is a good conductor, the chip maintains an even temperature and can dissipate excess heat more easily. Furthermore, since the chip-to-chip interconnects are so short, they generate less heat in the first place than their wirebond counterparts.

The above image, taken with a microscope, shows how the chips are melded together. Infineon uses a diffusion soldering process, called SOLID, for "solid liquid interdiffusion."

First, a layer of copper is applied to the two surfaces to be bonded. Patterns are created in the copper using standard photolithography techniques to define where the interconnections will go. Then a thin layer (3 microns) of solder is applied, and the surfaces are pressed together at 3 bar of pressure and 270 degrees C, creating a permanent bond. The backsides of the two silicon wafers have been pre-polished, so that when they are bonded together, their combined thickness is almost the same as an original single slice of silicon.

In the image, places where current is flowing appear bright. Copper, which shows up pink, forms a channel from the top chip to the bottom chip. The grey areas at the top and bottom of the image are cross-sections of plain silicon -- the electronics are only found in the surface layer of the wafer.

Infineon's first prototype 3D IC, produced for an unnamed smart-card vendor, integrates a memory chip with the smart-card controller, increasing the available memory from the usual maximum of 32 kbytes to 160 kbytes.

Proving that it works is the first step, says Schönrock, and now the company will look at partnering with other chipmakers to produce products that meet their needs. There is also an obvious opportunity to apply this technique to products that Infineon makes itself, such as VDSL gear. The company also "hasn't ruled out the possibility" of licensing its technology to other foundries, he adds.

— Pauline Rigby, Senior Editor, Light Reading
http://www.lightreading.com Want to know more? The big cheeses of the optical networking industry will be discussing this very topic at Opticon 2002, Light Reading’s annual conference, being held in San Jose, California, August 19-22. Check it out at Opticon 2002.

Register now and save $500 off the registration fee. Just use the VIP Code C2PT1LHT on your registration form, and deduct $500 from the published conference fee. It's that simple!

(0)  | 
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View
More Blogs from Out of the Lab
The US goverment has funded two projects to develop an optical packet router capable of scaling to 100 Tbit/s
BlazePhotonics has slashed losses in hollow fiber, according to research it presented at OFC
Intel's silicon modulator could turn out to be a bit of a letdown – because it's not all that fast
Xilinx is funding research that could lead to FPGAs replacing network processors in future optical networks
U. of Kansas researchers think they're close to multiwavelength all-optical clock recovery
Flash Poll
From The Founder
It's clear to me that the communications industry is divided into two types of people, and only one is living in the real world.
LRTV Custom TV
Using Service Quality to Drive WiFi Monetization

10|22|14   |   6:51   |   (0) comments


Live from the SCTE conference: Heavy Reading's Alan Breznick explores the forces shaping the WiFi opportunity in an interview with CableLabs' Justin Colwell and Amdocs' Ken Roulier.
LRTV Custom TV
Distributed Access Architectures – 2

10|21|14   |   8:51:00 AM   |   (0) comments


ARRIS CTO Network Solutions Tom Cloonan discusses why many if not most MSOs will continue with integrated CCAP, while addressing why some are also looking at two futuristic, distributed access architectures: Remote PHY and Remote CCAP.
LRTV Custom TV
Distributed Access Architectures – 1

10|21|14   |   9:01   |   (0) comments


SCTE Sr. Director of Engineering Dean Stoneback discusses the pros and cons of distributed access architecture (DAA) and its various forms, which range from basic Remote PHY to full CMTS functionality in the node.
LRTV Custom TV
The WiFi Road to Riches – 2

10|21|14   |   3:58   |   (0) comments


ARRIS Senior Solution Architect Eli Baruch talks about how MSOs can enable public and community WiFi through 1) outdoor access points, 2) businesses seeking to offer WiFi to customers, and 3) residential WiFi gateway extensions.
LRTV Custom TV
The WiFi Road to Riches – 1

10|21|14   |   10:15   |   (0) comments


SCTE Director of Advanced Technologies Steve Harris discusses WiFi deployments, drivers, challenges and advances, including 802.11ac, carrier-grade WiFi, community WiFi, Hotspot 2.0, Passpoint, WiFi-First and voice-over-WiFi.
LRTV Custom TV
Advantech Accelerates 100G Traffic Handling

10|17|14   |   7:56   |   (0) comments


Paul Stevens from Advantech explains why handling 100GbE needs a whole new platform design approach and how Advantech is addressing the needs of equipment providers and carriers to give them the flexibility and performance they will need for SDN and NFV deployment.
LRTV Huawei Video Resource Center
Holland's Imtech Traffic & Infra Discusses Huawei's ICT Solution and Services

10|16|14   |   4:49   |   (0) comments


Dimitry Theebe is from the business unit at Imtech Traffic & Infra which delivers communications solutions for transportations. His partnershp with Huawei began about a years ago. In this video, Theebe speaks more about this partnership and what he hopes to accomplish with Huawei.
LRTV Huawei Video Resource Center
Huawei's Comprehensive Storage Solutions Vital for SVR

10|16|14   |   6:16   |   (0) comments


SVR Information Technology provides cloud services for academic and special sectors. With Huawei's support, SVR and Yildiz Technical University has established Turkey's largest and most advanced High Performance Computing system. CSO Ismail Cem Aslan talks about what he hopes Huawei's OceanStor storage system will bring for him.
LRTV Huawei Video Resource Center
Mexico's Servitron's Impression of Huawei at CCW 2014

10|16|14   |   6:35   |   (0) comments


Servitron is a network operator in Mexico that has been in the trunking industry for the past 20 years. Its COO, Ing. Ragnar Trillo O., explains at Critical Communications World 2014 that his company has been interested in the long-term evolution of LTE technology and its adoption for TETRA.
LRTV Huawei Video Resource Center
Building a Better Dubai

10|16|14   |   2:06   |   (0) comments


Abdulla Ahmed Al Falasi is the director of commercial affairs, a telecommunications coordinator for the government of Dubai. Their areas of service span across multiple industries, including police, safety, shopping malls and more. In this video, Abdulla talks about his department's work with Huawei.
LRTV Huawei Video Resource Center
Huawei Lights Up Malaysia Partner Maju Nusa

10|16|14   |   1:59   |   (0) comments


Malaysia's Maju Nusa is an enterprise partner to Huawei in networking, route switches and telco equipment. At this year's Critical Communications World in Singapore, CTO Pushpender Singh talks about what Huawei's eLTE solutions mean to his company and for Malaysia.
LRTV Custom TV
Evolving From HFC to FTTH Networks

10|15|14   |   2:19   |   (0) comments


Cisco's Todd McCrum delves into the future of cable's HFC plant, examining how DOCSIS 3.1 and advanced video compression will extend its life and how the IP video transition will usher in GPON and EPON over FTTH.
Upcoming Live Events
October 29, 2014, New York City
November 6, 2014, Santa Clara
November 11, 2014, Atlanta, GA
December 2, 2014, New York City
December 3, 2014, New York City
December 9-10, 2014, Reykjavik, Iceland
February 10, 2015, Atlanta, GA
June 9-10, 2015, Chicago, IL
Infographics
WhoIsHostingThis.com presents six of the world's most extreme WiFi hotspots, enabling the most epic selfies you can imagine.
Hot Topics
Is Health the Killer App for the IoT?
Jason Meyers, Senior Editor, Gigabit Cities/IoT, 10/22/2014
Drones Hover Over the IoT Sector
Jason Meyers, Senior Editor, Gigabit Cities/IoT, 10/23/2014
Analysts Warn of Major NFV Gaps
Carol Wilson, Editor-at-large, 10/22/2014
Roku Raises $25M, But for What?
Mari Silbey, Independent Technology Editor, 10/23/2014
AT&T: Merger Review Halt Won't Hurt Us
Alan Breznick, Cable/Video Practice Leader, 10/23/2014
Like Us on Facebook
Twitter Feed